English, asked by notso5188, 1 year ago

Lengthy essay on science and future

Answers

Answered by vidya1234
0

In your High School science classes you may have learnt Hooke’s law, the law of physics which relates a spring’s length to how hard you pull on it. What your High School science teacher probably didn’t tell you is that when Robert Hooke discovered his law in 1676, he published it as an anagram, “ceiiinossssttuv”, which he revealed two years later as the Latin “ut tensio, sic vis”, meaning “as the extension, so the force”. This ensured that if someone else made the same discovery, Hooke could reveal the anagram and claim priority, thus buying time in which he alone could build upon the discovery.


Hooke was not unusual. Many great scientists of the age, including Leonardo, Galileo and Huygens, used anagrams or ciphers for similar purposes. The Newton-Leibniz controversy over who invented calculus occurred because Newton claimed to have invented calculus in the 1660s and 1670s, but didn’t publish until 1693. In the meantime, Leibniz developed and published his own version of calculus. Imagine modern biology if the human genome had been announced as an anagram, or if publication had been delayed thirty years.


Why were Hooke, Newton, and their contemporaries so secretive? In fact, up until this time discoveries were routinely kept secret. Alchemists intent on converting lead into gold or finding the secret of eternal youth would often take their discoveries with them to their graves. A secretive culture of discovery was a natural consequence of a society in which there was often little personal gain in sharing discoveries.


The great scientific advances in the time of Hooke and Newton motivated wealthy patrons such as the government to begin subsidizing science as a profession. Much of the motivation came from the public benefit delivered by scientific discovery, and that benefit was strongest if discoveries were shared. The result was a scientific culture which to this day rewards the sharing of discoveries with jobs and prestige for the discoverer.


This cultural transition was just beginning in the time of Hooke and Newton, but a little over a century later the great physicist Michael Faraday could advise a younger colleague to “Work. Finish. Publish.” The culture of science had changed so that a discovery not published in a scientific journal was not truly complete. Today, when a scientist applies for a job, the most important part of the application is their published scientific papers. But in 1662, when Hooke applied for the job of Curator of Experiments at the Royal Society, he certainly was not asked for such a record, because the first scientific journals weren’t created until three years later, in 1665.


The adoption and growth of the scientific journal system has created a body of shared knowledge for our civilization, a collective long-term memory which is the basis for much of human progress. This system has changed surprisingly little in the last 300 years. The internet offers us the first major opportunity to improve this collective long-term memory, and to create a collective short-term working memory, a conversational commons for the rapid collaborative development of ideas. The process of scientific discovery – how we do science – will change more over the next 20 years than in the past 300 years.


This change will not be achieved without great effort. From the outside, scientists currently appear puzzlingly slow to adopt many online tools. We’ll see that this is a consequence of some major barriers deeply embedded within the culture of science. The first part of this essay is about these barriers, and how to overcome them. The second part of the essay illustrates these ideas, with a proposal for an online collaboration market where scientists can rapidly outsource scientific problems.




Hope it helpful......

Answered by ItzCuteChori
0

{\huge\bf{\mid{\overline{\underline{Science \:and \:Future}}}\mid}}

In your High School science classes you may have learnt Hooke’s law, the law of physics which relates a spring’s length to how hard you pull on it. What your High School science teacher probably didn’t tell you is that when Robert Hooke discovered his law in 1676, he published it as an anagram, “ceiiinossssttuv”, which he revealed two years later as the Latin “ut tensio, sic vis”, meaning “as the extension, so the force”. This ensured that if someone else made the same discovery, Hooke could reveal the anagram and claim priority, thus buying time in which he alone could build upon the discovery.

Hooke was not unusual. Many great scientists of the age, including Leonardo, Galileo and Huygens, used anagrams or ciphers for similar purposes. The Newton-Leibniz controversy over who invented calculus occurred because Newton claimed to have invented calculus in the 1660s and 1670s, but didn’t publish until 1693. In the meantime, Leibniz developed and published his own version of calculus. Imagine modern biology if the human genome had been announced as an anagram, or if publication had been delayed thirty years.

Why were Hooke, Newton, and their contemporaries so secretive? In fact, up until this time discoveries were routinely kept secret. Alchemists intent on converting lead into gold or finding the secret of eternal youth would often take their discoveries with them to their graves. A secretive culture of discovery was a natural consequence of a society in which there was often little personal gain in sharing discoveries.

The great scientific advances in the time of Hooke and Newton motivated wealthy patrons such as the government to begin subsidizing science as a profession. Much of the motivation came from the public benefit delivered by scientific discovery, and that benefit was strongest if discoveries were shared. The result was a scientific culture which to this day rewards the sharing of discoveries with jobs and prestige for the discoverer.

This cultural transition was just beginning in the time of Hooke and Newton, but a little over a century later the great physicist Michael Faraday could advise a younger colleague to “Work. Finish. Publish.” The culture of science had changed so that a discovery not published in a scientific journal was not truly complete. Today, when a scientist applies for a job, the most important part of the application is their published scientific papers. But in 1662, when Hooke applied for the job of Curator of Experiments at the Royal Society, he certainly was not asked for such a record, because the first scientific journals weren’t created until three years later, in 1665.

The adoption and growth of the scientific journal system has created a body of shared knowledge for our civilization, a collective long-term memory which is the basis for much of human progress. This system has changed surprisingly little in the last 300 years. The internet offers us the first major opportunity to improve this collective long-term memory, and to create a collective short-term working memory, a conversational commons for the rapid collaborative development of ideas. The process of scientific discovery – how we do science – will change more over the next 20 years than in the past 300 years.

This change will not be achieved without great effort. From the outside, scientists currently appear puzzlingly slow to adopt many online tools. We’ll see that this is a consequence of some major barriers deeply embedded within the culture of science. The first part of this essay is about these barriers, and how to overcome them. The second part of the essay illustrates these ideas, with a proposal for an online collaboration market where scientists can rapidly outsource scientific problems.

Similar questions