Math, asked by priyal6177, 11 months ago

Let ¹⁰∑ₖ₌₁ f(a + k) = 16(2¹⁰ - 1), where the function f satisfies f(x + y) = f(x) f(y) for all natural numbers x, y and f(1) = 2. Then the natural number ‘a’ is:
(A) 4 (B) 16
(C) 2 (D) 3

Answers

Answered by adventureisland
2

Option D: 3 is the natural number

Explanation:

Given that \sum_{\mathrm{k}=1}^{10} \mathrm{f}(\mathrm{a}+\mathrm{k})=16\left(2^{10}-1\right) where the function f satisfies f(x+y)=f(x) f(y) for all natural numbers x,y and f(1)=2

We need to determine the natural number ‘a’

When x=1, y=1, then f(x+y)=f(x) f(y) becomes

f(2)=f(1) \cdot f(1)

f(2)=2^2

Similarly, when x=2, y=1, we have,

f(3)=f(2) \cdot f(1)=2^{3}

Thus, the value of x and y goes on and the general term is f(n)=2^{n} ----(1)

Let us consider \sum_{\mathrm{k}=1}^{10} \mathrm{f}(\mathrm{a}+\mathrm{k})=16\left(2^{10}-1\right)

f(a+1)+f(a+2)+\ldots \ldots+f(a+10)=16\left(2^{10}-1\right)

Using equation (1), we get,

2^{a+1}+2^{a+2}+\ldots \ldots+2^{a+10}=16\left(2^{10}-1\right)

   2^{\mathrm{a}}\left[2^{1}+2^{2}+\ldots \ldots+2^{10}\right]=16\left(2^{10}-1\right)

Using the sum of terms, we get,

2^{\mathrm{a}}\left[\frac{2\left(2^{10}-1\right)}{2-1}\right]=16\left(2^{10}-1\right)

Simplifying, we get,

2^a[2(2^{10}-1)]=16\left(2^{10}-1\right)

             2^{a+1}=16

             2^{a+1}=2^{3+1}

Thus, the value of the natural number a is 3

Hence, Option D is the correct answer.

Learn more:

(1) The sum of all natural numbers a such that a 2 16a + 67 is a perfect square is what?

brainly.in/question/9309659

(2) Find the value of a+b+c+d if the product of first 10 natural numbers is written as 2a+3b+5c+7d

brainly.in/question/70512

Similar questions