Math, asked by seaprncss, 7 months ago

Let α1 be a circle with centre O and AB be diameter. Let P be a point on OB different from O. Suppose another circle α2 with centre P lies in the interior of α1. Tangents are drawn from A and B to the circle α2 intersecting α1 at A1 and B1 respectively such that A1 and B1 are on opposite side of AB. If A1B = 6, AB1 = 18 and OP = 10, find radius of α1.

Answers

Answered by Anonymous
91

\sf\large{\underline{\underline{ Given:}}}

\sf\large{\underline{\underline{ In\:Triangle\:APQ, \:We \:have, }}}

\sf\large{\red{\implies sin\theta = \dfrac{y}{x} + 10 \: \: .......(i)}}

\sf\large{ \: \: }

\sf\large{\underline{\underline{ In\:Triangle\:AA'B, \:we\:have,}}}

\sf\large{\purple{\implies sin\theta = \dfrac{5}{2x} \: \: ....(ii)}}

\sf\large{ \: \: }

\sf\large{\underline{\underline{From\:(i) \:and\:(ii)}}}

\sf\large{\orange{\implies \dfrac{y}{x+10} = \dfrac{5}{2x} \: \: ...(iii)}}

\sf\large{ \: \: }

\sf\large{\underline{\underline{Similarly:}}}

\sf\large{\green{\implies \dfrac{y}{x-10} = \dfrac{15}{2x} \: \: ...(iv)}}

\sf\large{ \: \: }

\sf\large{\underline{\underline{From\:(iii)\:and\:(iv)}}}

\sf\large{\red{\implies 5x + 50 = 15x - 150}}

\sf\large{\purple{\implies 5x - 15x = -150 - 50}}

\sf\large{\orange{\implies -10x = -200}}

\sf\large{\green{\implies x = 20}}

\sf\large{ \: \: }

\sf\large{\underline{\underline{Therefore:}}}

\sf\large{ \: \: \: \: \: Radius\:of\: α1 = 20}

Attachments:
Similar questions
Math, 3 months ago