Math, asked by RiyaVaghani, 6 months ago

Let 2^(x+y)=10, 2^(y+z)=20 and 2^(z+x)=30 where x, y and z are any three real numbers. The value of 2^x is (1) 3/2 (2) root 15 (3) (root 6) /2 (4) 15

Answers

Answered by shadowsabers03
13

Given that,

\longrightarrow2^{x+y}=10

Multiply both sides by 2.

\longrightarrow2^{x+y}\times2=10\times2

\longrightarrow2^{x+y+1}=20\quad\quad\dots(1)

But given that,

\longrightarrow2^{y+z}=20

Comparing this with (1) we get,

\longrightarrow x+y+1=y+z

\longrightarrow x+1=z\quad\quad\dots(2)

Given that,

\longrightarrow2^{z+x}=30

From (2),

\longrightarrow2^{2x+1}=30

\longrightarrow2^{2x}\times2=30

\longrightarrow(2^x)^2=15

\longrightarrow\underline{\underline{2^x=\sqrt{15}}}

Hence (2) is the answer.

Answered by Arceus02
5

Let \sf 2^x be \sf a, \sf 2^y be \sf b, and \sf 2^z be \sf c.

We're given,

\sf 2^{(x + y)} = 10

\longrightarrow \sf 2^x * 2^y = 10

\longrightarrow \sf ab = 10\quad\quad\dots(1)

\sf{\\}

Similarly,

\sf 2^{(y + z)} = 20

\longrightarrow \sf 2^y * 2^z = 20

\longrightarrow \sf bc = 10\quad\quad\dots(2)

\sf{\\}

And,

\sf 2^{(z + x)} = 20

\longrightarrow \sf 2^z * 2^x = 20

\longrightarrow \sf ca = 10

\longrightarrow  \sf  c = \dfrac{30}{a}\quad\quad\dots(3)

\sf{\\}

From (3) and (2),

\sf  bc = 20

\longrightarrow \sf b * \dfrac{30}{a} = 20

\longrightarrow \sf b = \dfrac{2}{3}a \quad\quad\dots(4)

\sf{\\}

From (4) and (1),

\sf ab = 10

\longrightarrow \sf \bigg( \dfrac{2}{3}a\bigg)a = 10

\longrightarrow \sf \dfrac{2}{3}a^2 = 10

\longrightarrow \sf a^2 = \dfrac{10 * 3}{2}

\longrightarrow \sf a^2 = 15

\longrightarrow \sf a = \sqrt{15}

\longrightarrow \sf 2^x = \sqrt{15}

\sf{\\}

Hence, the answer is,

\longrightarrow \underline{\underline{\sf{\green{2^x = \sqrt{15}}}}}

Similar questions