Math, asked by yoyosai67, 3 months ago

Let 2k + 1 be a prime number. Prove that then k= 0 or k= 2n for some n
2> 0.​

Answers

Answered by pranaykumar4456
1

Answer:

its so simple n multiplied by k = n is 0 + n

Step-by-step explanation:

Answered by ankhidassarma9
0

Answer:

  • The given number is 2^{k} + 1 , which is a prime number.
  • we have to prove :
  1. k= 0 ; or
  2. k= 2^{n} for some n^{2}> 0.​
  • Case 1 : for k=0;

      Putting k=0 in the given number 2^{k} + 1 , we get

      2^{k} + 1 = 2^{0} + 1 = 1+1 = 2 , which is a prime number.

  • Case 2 : Assume k is not a power of 2, i.e. k≠ 2^{n}

       let k=m. 2^{n}  [ where m is an odd prime factor]

note:

For any odd number m , x^{m} + 1 = (x + 1)(1 - x +x^{2} - x^{3}  + x^{4} - ..........+x^{m-1})

Hence : x^{m} + 1 has one factor  (x + 1).

Side Proof :

Consider the g.p. (1 - x +x^{2} - x^{3}  + x^{4} - ..........+x^{m-1})  with a= 1, r = -x  upto m terms.

so, (1 - x +x^{2} - x^{3}  + x^{4} - ..........+x^{m-1})  = (1 - x +x^{2} - x^{3}  + x^{4} - ..........+ (-1)^{m-1}x^{m-1}) = \frac{a(r^{m} - 1 )}{r - 1} = \frac{(-1)^{m} x^{m} - 1}{-x - 1} ;

If m is odd , then (-1)^{m} = -1       and     (-1)^{m-1} = 1

For m is odd, (1 - x +x^{2} - x^{3}  + x^{4} - ..........+ (-1)^{m-1} = \frac{x^{m} + 1}{x + 1}

For m is even , (1 - x +x^{2} - x^{3}  + x^{4} - ..........+ (-1)^{m-1} =

x^{m} + 1 = (x + 1)(1 - x +x^{2} - x^{3}  + x^{4} - ..........+x^{m-1}) , as required

If , k=m. 2^{n} , then    2^{k} + 1 = 2^{m.2^{n} } + 1

2^{k} + 1  has a factor 2^{2m} + 1

So, we can say , if k is not a power of 2, then  2^{k} + 1  is not a prime.

Hence, it is proved that  2^{k} + 1 be a prime number if k= 0 or k= 2^{n} for some n^{2}> 0.​

Similar questions