Let A = ) ( (0, 1), B = (2,3,4) and c= (3,5) verity that Ax (BUC) = (AXB) U (AXC)
Answers
Thats it. This picture was not clear. Pls adjust
Answer:
proved , A*(B∪C) = ( A*B)∪(A*C)
Step-by-step explanation:
Given :- A = { 0,1 } , B = { 2,3,4 } , C = { 3,5 }
To find :- to verify :- A* ( B∪C) = (A*B)∪(A*C)
Solution :-
Step 1) write the sets , A = { 0,1 } , B = { 2,3,4 } , C = ( 3,5 }
Step 2)
LHS = A * ( B∪C)
1. ( B∪C) = { 2,3,4 } ∪ { 3,5}
= { 2,3,4,5} -------( by using the union property )
2. A* ( B∪C) = { 0,1} * { 2,3,4,5}
A * ( B ∪C) = { (0,2) ,(0,3) , ( 0,4) , (0,5) , (1,2) ,( 1,3) , ( 1,4 ) , ( 1 , 5 ) }
--------- ( by using multiplication property of sets , multiply each element of the set with the other set )
Step 3)
RHS = (A*B) ∪ ( A*C)
1. A*B = { 0,1 } * { 2,3,4 }
= { ( 0,2 ) , ( 0,3 ) , ( 0,4 ) , ( 1,2 ) , ( 1,3 ) , (1,4 ) } ----- (1)
2. A*C = { 0,1 } * { 3,5 }
= { ( 0,3 ) , ( 0,5 ) , (1,3 ) , ( 1,5 ) } ------ ( 2)
3. ( A*B) ∪ ( A*C ) = { ( 0,2 ) , ( 0,3 ) , ( 0,4 ) , ( 0,5 ) , ( 1,2 ) , ( 1,3 ) , ( 1,4 ) , ( 1,5 ) } ------ ( 3 )
Step 4) From LHS and RHS equation ,
we conclude that LHS = RHS ,
and proved that ,
A* ( B∪C) = ( A*B ) ∪ ( A*C )
#SPJ3