Let A={0,1},B={2,3,4}and C={3,5}verity That Ax(BUC)=(AxB) U (AxC)
Answers
Answer:
Step-by-step explanation:
Given:
A={0,1} b={2,3,4} c={3,5}
Taking LHS,
Ax(BUC)
Here
BUC={2,3,4,5}
Now
Ax(BUC)
{0,1}x{2,3,4,5}
=[(0,2),(0,3),(0,4),(0,4),(1,2),(1,3),(1,4),(1,5)]=LHS
Taking RHS
(AxB)u(AxC)
Here AxB={0,1}x{2,3,4}
=[(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)]
Here AxC={0,1}x{3,5}=[(0,3),(0,5),(1,3),(1,5)]
Now (AxB)U(AxC)=[(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)]U[(0,3),(0,5),(1,3),(1,5)]
=[(0,2),(0,3),(0,4),(0,4),(1,2),(1,3),(1,4),(1,5)]=RHS
Here LHS=RHS
Hence, Proved
Ax(BUC)=(AxB)U(AxC)
I hope it helps You
SOLUTION
GIVEN
A = { 0 , 1 } , B = { 2 , 3 , 4 } , C = { 3 , 5 }
TO VERIFY
A × ( B ∪ C ) = ( A × B ) ∪ ( A × C )
CONCEPT TO BE IMPLEMENTED
Cartesian Product :
Let A and B are two sets. Then the Cartesian product of A and B is denoted by A × B and defined as
\sf{A \times B = \{(x, y) : x \in A \: \: and \: \: y \in B \}}A×B={(x,y):x∈Aandy∈B}
EVALUATION
Here it is given that
A = { 0 , 1 } , B = { 2 , 3 , 4 } , C = { 3 , 5 }
We have to verify
A × ( B ∪ C ) = ( A × B ) ∪ ( A × C )
Now
B ∪ C = { 2 , 3 , 4 , 5 }
∴ LHS
= A × ( B ∪ C )
= { (0,2) , (0,3) , (0,4) , (0,5) , (1,2) , (1,3) , (1,4) , (1,5) }
Again
( A × B )
= { (0,2) , (0,3) , (0,4) , (1,2) , (1,3) , (1,4) }
( A × C )
= { (0,3) , (0,5) , (1,2) , (1,3) , (1,4) , (1,5) }
∴ RHS
= ( A × B ) ∪ ( A × C )
= { (0,2) , (0,3) , (0,4) , (0,5) , (1,2) , (1,3) , (1,4) , (1,5) }
∴ LHS = RHS
Hence verified
━━━━━━━━━━━━━━━━
Learn more from Brainly :-
If n(A) = 300, n(A∪B) = 500, n(A∩B) = 50 and n(B′) = 350, find n(B) and n(U).
https://brainly.in/question/4193770
2. If A, B and C are any three sets then prove the following using venn-diagram
A∩(BUC) = (A∩B) U (A∩C)
https://brainly.in/question/23234089