Math, asked by himanshu7283, 1 year ago

let A (1,2,3,...,14) define a relation R from Ato A by R{(x,y):3x-y=0,where x,y E A }.Write down its domain codomain and range .​

Answers

Answered by raja2511919
6

Answer:

this is your solution for the following information

Attachments:
Answered by Anonymous
56

{\huge {\boxed{\bold{\boxed{\mathfrak{\color{Blue}{Answer}}}}}}}

It is given that the relation R from A to A is given by R = {(x, y): 3x – y = 0, where x, y ∈ A}.

It means that R = {(x, y) : 3x = y, where x, y ∈ A}

Hence, R = {(1, 3), (2, 6), (3, 9), (4, 12)}

We know that the domain of R is defined as the set of all first elements of the ordered pairs in the given relation.

Hence, the domain of R = {1, 2, 3, 4}

To determine the codomain, we know that the entire set A is the codomain of the relation R.

Therefore, the codomain of R = A = {1, 2, 3,…,14}

As it is known that, the range of R is defined as the set of all second elements in the relation ordered pair.

Hence, the Range of R is given by = {3, 6, 9, 12}

Hope it's Helpful.....:)

Similar questions