Let a = 111 ... 1 (55 digits), b = 1 + 10+10^2 +......+10^4,c=1+ 10^5 +10^10 +10^15.....+10^50,then
Answers
Given : a = 111 ... 1 (55 digits), b = 1 + 10+10^2 +......+10^4,c=1+ 10^5 +10^10 +10^15.....+10^50,
To Find : correct option :
a=b+c .
a=bc
b=ac
c=ab
Solution:
b = 1 + 10 + 10² + 10³ + 10⁴
c = 1 + 10⁵ + 10¹⁰ + 10¹⁵ + ...............+ 10⁵⁰
bc = ( 1 + 10 + 10² + 10³ + 10⁴ ) (1 + 10⁵ + 10¹⁰ + 10¹⁵ + ...............+ 10⁵⁰ )
=1 (1 + 10⁵ + 10¹⁰ + 10¹⁵ + ...............+ 1010⁵⁰ ) + 10 (1 + 10⁵ + 10¹⁰ + 10¹⁵ + ...............+ 10⁵⁰ )+ 10² (1 + 10⁵ + 10¹⁰ + 10¹⁵ + ...............+10⁵⁰ )+ 10³ (1 + 10⁵ + 10¹⁰ + 10¹⁵ + ...............+ 10⁵⁰ )+ 10⁴ (1 + 10⁵ + 10¹⁰ + 10¹⁵ + ...............+ 10⁵⁰ )
= (1 + 10⁵ + 10¹⁰ + 10¹⁵ + ...............+ 10⁵⁰ ) + (10¹ + 10⁶ + 10¹¹ + 10¹⁶ + ...............+ 10⁵¹) + (10²+ 10⁷ + 10¹² + 10¹⁷ + ...............+ 10⁵²) + (10³+ 10⁸ + 10¹³ + 10¹⁸ + ...............+ 10⁵³) + (10⁴+ 10⁹ + 10¹⁴ + 10¹⁹ + ...............+ 10⁵⁴)
= 1 + 10¹ + 10² + ...................................+ 10⁵⁴
= 10⁵⁴ + 10⁵³ + ....................+ 10² + 10¹ + 1
= 111...........1 ( 55 Digits)
Hence a = bc
Another way
b = 1 + 10 + 10² + 10³ + 10⁴ = 1 (10⁵ - 1)/(10 - 1) = (10⁵ - 1)/9
c = 1 + 10⁵ + 10¹⁰ + 10¹⁵ + ...............+ 10⁵⁰ = 1 ( (10⁵)¹¹ - 1) /(10⁵ - 1) = (10⁵⁵ - 1)/(10⁵ - 1)
=> bc = (10⁵⁵ - 1)/9
= (10⁵⁵ - 1)/(10 - 1)
= 1111.....1 ( 55 times) as 1 n times= ( (10ⁿ - 1)/(10 - 1)
Hence bc = a
Learn More:
23. A geometric progression (GP) consistsof 200 terms. If the sum of ...
https://brainly.in/question/13730835
find three numbers in GP whose sum is 35 and the sum of their ...
https://brainly.in/question/13271759