Math, asked by lumiwanjharlynne, 19 hours ago

Let A={2,3,4,6} and B={2,3,4,5,8}.R is a relation from A to B define by (x,y) ∈ R if x divides y (with zero remainder),x ∈ A and y ∈ of B. a)determine the elements of R b)determine the matrix form of R​

Answers

Answered by Rajshekhar1234
0

Answer:

ow3983373739202029383837377337

Answered by neetusingh7584
0

Step-by-step explanation:

relation R from the set A={2,3,4,5} to B={3,6,7,10} is defined as, (x,y)∈R⇒x is relatively prime to y.

Now, it is seen that 2 is relatively prime to 3,  [HCF of 2 and 3 is 1]

So, (2,3)∈R

Similarly, 2 is relatively prime to 7 so that (2,7)∈R etc.

So, we get R={(2,3),(2,7),(3,7),(3,10),(4,3),(4,7),(5,3),(5,6),(5,7)}

Thus, domain ={2,3,4,5} and range ={3,6,7,10}.

Similar questions