Physics, asked by Anonymous, 9 months ago

let A = 2m i^ 6m j^ - 3m k^ and B = 4m i^ 2m j^ - 1m k^ . Then A.B = 1) 8m i^ +12mj^ -3m k^ 2) 12m i^ - 14m j^ -20mk^ 3)23 m² 4)17m²

I WILL MARK HIM/HER AS BRAINLIEST!!!!!!!!

Answers

Answered by Anonymous
166

Answer -

Given -

\longrightarrow\rm\vec{A} = 2m \hat{\imath} + 6m \hat{\jmath} - 3m\hat{k}

\longrightarrow\rm\vec{B} = 4m \hat{\imath} + 2m \hat{\jmath} - m\hat{k}

━━━━━━━━━━━━━

To find -

Scalar product of \rm\vec{A} and \rm\vec{B}

= \rm\vec{A} .\rm\vec{B}

━━━━━━━━━━━━━

Formula used -

For two vectors

\longrightarrowA =  \rm\vec{A} = a_x\hat{\imath} + a_y\hat{\jmath} - a_z\hat{k}

\longrightarrowB = \rm\vec{B} = b_x\hat{\imath} + b_y\hat{\jmath} - b_z\hat{k}

\implies\boxed{\rm\vec{A} .\rm\vec{B} = \rm{a_x b_x + a_y b_y + a_z b_z }}

━━━━━━━━━━━━━

Solution -

\rm\vec{A} = 2m \hat{\imath} + 6m \hat{\jmath} - 3m\hat{k}

\rm\vec{B} = 4m \hat{\imath} + 2m \hat{\jmath} - m\hat{k}

━━━━━━━━━━━━━

\implies \rm\vec{A} .\rm\vec{B} = \tt(2m \times 4m) +( 6m \times 2m)+ ((- 3)m \times(  - 1m))

\implies \rm\vec{A} .\vec{B} = (8 + 12 + 3)m^2 = 23m^2

ADDITIONAL INFORMATION -

\rm{\vec{A} .\vec{B} }= | \vec{A}||\vec{B}|  \cos \theta

where -

\longrightarrow| \vec{A}|\implies magnitude of \vec{A}

\longrightarrow| \vec{B}|\implies magnitude of \vec{B}

\longrightarrow\theta\implies angle between \vec{A} and \vec{B}

━━━━━━━━━━━━━

If \vec{A} and \vec{B} are perpendicular to each other then

\rm{\vec{A} .\vec{B} }=0

because cos90° = 0

━━━━━━━━━━━━━

Thanks

Similar questions