Let A = {3, 5, 7}, B = {2, 3, 4, 6} and C = {2, 3, 4, 5, 6, 7, 8}
(i) Verify (A ∩ B)' = A' ∪ B'
(ii) Verify (A ∪ B)' = A' ∩ B'
Answers
Solution
(i) (A ∩ B)' = A' ∪ B'
L.H.S. = (A ∩ B)'
A ∩ B = {3}
(A ∩ B)' = {2, 4, 5, 6, 7, 8} ……………….. (1)
R.H.S. = A' ∪ B'
A’ = {5, 7, 8}
B’ = {2, 4, 6}
A’∪B’ = {2, 4, 5, 6, 7, 8} ……………….. (2)
From (1) and (2), we conclude that;
(A ∩ B)' = (A' ∪ B')
(ii) (A ∪ B)' = A' ∩ B'
L.H.S. = (A ∪ B)'
A∪B = {2, 3, 4, 5, 6, 7}
(A ∪ B)' = {8} ……………….. (1)
R.H.S. = A' ∩ B'
A' = {2, 4, 6, 8}
B' = {5, 7, 8}
A' ∩ B' = {8} ……………….. (2)
From (1) and (2), we conclude that;
(A ∪ B)' = A' ∩ B'
(i) (A ∩ B)' = A' ∪ B'
L.H.S. ⇒ (A ∩ B)'
⇒A ∩ B = {3}
(A ∩ B)' = {2, 4, 5, 6, 7, 8} -----(1)
R.H.S. ⇒ A' ∪ B'
A’ = {5, 7, 8}
∴B’ = {2, 4, 6}
A’∪B’ = {2, 4, 5, 6, 7, 8} ---- (2)
From (1) and (2), we get,
∴(A ∩ B)' = (A' ∪ B')
(ii) (A ∪ B)' = A' ∩ B'
L.H.S. ⇒ (A ∪ B)'
A∪B = {2, 3, 4, 5, 6, 7}
⇒(A ∪ B)' = {8} ----- (3)
R.H.S. ⇒ A' ∩ B'
A' = {2, 4, 6, 8}
B' = {5, 7, 8}
⇒A' ∩ B' = {8} ----(4)
From (3) and (4), we get;
∴(A ∪ B)' = A' ∩ B'