Math, asked by TwinkleKhurana, 11 months ago

Let A = 30 & B = 60. Verify each of the following sin(A-B)=sinA.cosB-cosA.sinB​

Answers

Answered by SiriSanjana22
1

Step-by-step explanation:

sin(30-60)

=sin (-30) [sin (-theta) = - sin ( theta)]

= -sin(30)

= - 1/2

sin(30). cos(60)- cos(30). sin(60)

1/2×1/2-√3/2.√3/2

1/4-3/4

-2/4

-1/2

hence proved

hope this helps

Answered by yashas694374
0

Step-by-step explanation:

A=30

B=60

 \sin(a   - b)  =   \sin(a)  \cos(b)  -  \cos(a)  \sin(b)

lhs=

 \sin(a - b)  =  \sin(30 - 60)

 =  \sin( - 30)

 =  -  \sin(30)

 =  -  \frac{1}{2}

rhs =  \sin(a)  \cos(b)  -  \cos(a)  \sin(b)

 =  \sin(30)  \cos(60)  -  \cos(30)  \sin(60)

 =  \frac{1}{2} . \frac{1}{2}  -  \frac{ \sqrt{3} }{2} . \frac{ \sqrt{3} }{2}

 =  \frac{1}{4}  -  \frac{3}{4}

 =  -  \frac{1}{2}

therefore LHS=RHS

Similar questions