Let A = 30°. Verify that
sin 3A = 3 sin A - 4 A
Answers
Answered by
17
Hey !!
A = 30°
3A = 3 × 30 = 90°
Sin3A = 3 Sin A - 4 × Sin³
LHS = Sin 3A = Sin90° = 1
And,
RHS = 3 Sin A - 4 Sin³ A
=> 3 Sin30° - 4 Sin³ 30°
=> [ 3 × 1/2 - 4 × (1/2)³ ]
=> ( 3/2 - 4 × 1/8 )
=> ( 3/2 - 1/2 )
=> 1
Hence,
LHS = RHS = 1
A = 30°
3A = 3 × 30 = 90°
Sin3A = 3 Sin A - 4 × Sin³
LHS = Sin 3A = Sin90° = 1
And,
RHS = 3 Sin A - 4 Sin³ A
=> 3 Sin30° - 4 Sin³ 30°
=> [ 3 × 1/2 - 4 × (1/2)³ ]
=> ( 3/2 - 4 × 1/8 )
=> ( 3/2 - 1/2 )
=> 1
Hence,
LHS = RHS = 1
Anonymous:
Thank you.
Answered by
12
Solution :
Given That A = 30°
To prove : Sin 3A = 3 Sin A - 4 Sin³ A
Proof :
LHS : -
Sin 3A
Substituting value of A
Sin ( 3 * 30 ) = Sin 90 = 1
RHS : -
3 Sin A - 4 Sin³ A
Substituting value of A
3 * Sin 30° - 4 * Sin³ 30
= 3 * - 4 *
= 3/2 - 1/2
= 2/2
= 1
Therefore LHS = RHS , i.e. Sin 3A = 3 Sin A - 4 Sin³ A = 1
Hence Proved !!!
Similar questions