Math, asked by srivastavshiv, 7 months ago

Let A = 3x^2 - 5x + 7, B = 24 - 8x^2 + 9, C = 7 + 5x^2
– 3x
Find : (a) A + B - C, (b) A - 2B + C, (c) A + B + 3C

Answers

Answered by Anonymous
58

Answer :

  • The value of + B - C is 33 - 2x - 10x²
  • The value of A - 2B + C is 16x² - 8x - 19

  • The value of A + B - 3C is 10x² - 14x + 61

Explanation :

Given :

  • Value of A = 3x² - 5x + 7

  • Value of B = 24 - 8x² + 9

  • Value of C = 7 + 5x² - 3x

To find :

  • Value of A + B - C = ?

  • Value of A - 2B + C = ?

  • Value of A + B + 3C = ?

Solution :

  • A + B - C = ?

By substituting the value of A , B and C in the above equation , we get :

==> A + B - C

==> 3x² - 5x + 7 + 24 - 8x² + 9 - (7 + 5x² - 3x)

==> 3x² - 5x + 7 + 24 - 8x² - 7 - 5x² + 3x

==> (3x² - 8x² - 5x²) + (-5x + 3x) + (7 + 24 + 9 - 7)

==> (3x² - 13x²) - 2x + 33

==> -10x² - 2x + 33

∴ A + B - C = 33 - 2x - 10x²

  • A - 2B + C = ?

By substituting the value of A , B and C in the above equation , we get :

==> A - 2B + C

==> 3x² - 5x + 7 - 2(24 - 8x² + 9) + 7 + 5x² - 3x

==> 3x² - 5x + 7 - 24 + 8x² - 9 + 7 + 5x² - 3x

==> (3x² + 8x² + 5x²) + (-5x - 3x) + (7 - 24 - 9 + 7)

==> 16x² - 8x - 19

∴ A - 2B + C = 16x² - 8x - 19

  • A + B + 3C = ?

By substituting the value of A , B and C in the above equation , we get :

==> A + B - 3C

==> 3x² - 5x + 7 + 24 - 8x² + 9 + 3(7 + 5x² - 3x)

==> 3x² - 5x + 7 + 24 - 8x² + 9 + 21 + 15x² - 9x

==> (3x² - 8x² + 15x²) + (-5x - 9x) + (7 + 24 + 9 + 21)

==> 10x² - 14x + 61

∴ A + B - 3C = 10x² - 14x + 61

Therefore,

  • A + B - C = 33 - 2x - 10x²

  • A - 2B + C = 16x² - 8x - 19

  • A + B - 3C = 10x² - 14x + 61

Uriyella: Great! :)
Answered by Anonymous
29

\huge\underline\bold{\mathbb{YOUR\:QUESTION}}

Let,

A = 3x^{2} - 5x + 7 \\B = 24 - 8x^{2} + 9 \\C = 7 + 5x^{2}- 3x

Find :

(a) A + B - C

(b) A - 2B + C

(c) A + B + 3C

\huge\underline\bold{\mathbb{GIVEN}}

  • A = 3x^{2} - 5x + 7

  • B = 24 - 8x^{2} + 9

  • C = 7 + 5x^{2}- 3x

\huge\underline\bold{\mathbb{SOLUTION}}

Let's find out the value of A + B - C.

A + B - C

Putting the values of A,\:B and C.

\implies (3x^{2} - 5x + 7)+(24 - 8x^{2} + 9)-(7 + 5x^{2}- 3x)

Remove parentheses.

\implies 3x^{2} - 5x + 7+24 - 8x^{2} + 9-7 - 5x^{2}+ 3x

Combine the like terms.

\implies (3x^{2} - 8x^{2} - 5x^{2})+(-5x +3x) + (7+24+9-7)

\implies -10x^{2}-2x+33

\implies {\boxed{33-2x-10x^{2}}}

\red{\therefore A + B - C=33-2x-10x^{2}}

\:

Let's find out the value of A - 2B + C.

A - 2B + C

Putting the values of A,\:B and C.

\implies (3x^{2} - 5x + 7)-2(24 - 8x^{2} + 9)+(7 + 5x^{2}- 3x)

Remove parentheses.

\implies 3x^{2} - 5x + 7-48 + 16x^{2} - 18+7 + 5x^{2}- 3x

Combine the like terms.

\implies (3x^{2}+ 16x^{2}+5x^{2})+( - 5x-3x) + (7-48 - 18+7)

\implies {\boxed{24x^{2}-8x -52}}

\red{\therefore A - 2B + C=24x^{2}-8x -52}

\:

Let's find out the value of A + B + 3C.

A + B + 3C

Putting the values of A,\:B and C.

\implies (3x^{2} - 5x + 7)+(24 - 8x^{2} + 9)+3(7 + 5x^{2}- 3x)

Remove parentheses.

\implies 3x^{2} - 5x + 7+24 - 8x^{2} + 9+21 + 15x^{2}- 9x)

Combine the like terms.

\implies (3x^{2}- 8x^{2}+ 15x^{2}) +(- 5x-9x) + (7+24 + 9+21)

\implies {\boxed{10x^{2} -14x + 61}}

\red{\therefore A + B + 3C=10x^{2} -14x + 61}

\:

\huge\underline\bold{\mathbb{YOUR\:ANSWER}}

(a)  A + B - C=33-2x-10x^{2}

(b)  A - 2B + C=24x^{2}-8x -52

(c)  A + B + 3C=10x^{2} -14x + 61


Uriyella: Good! :)
Similar questions