Let A = 3x^2 - 5x + 7, B = 24 - 8x^2 + 9, C = 7 + 5x^2
– 3x
Find : (a) A + B - C, (b) A - 2B + C, (c) A + B + 3C
Answers
Answer :
- The value of + B - C is 33 - 2x - 10x²
- The value of A - 2B + C is 16x² - 8x - 19
- The value of A + B - 3C is 10x² - 14x + 61
Explanation :
Given :
- Value of A = 3x² - 5x + 7
- Value of B = 24 - 8x² + 9
- Value of C = 7 + 5x² - 3x
To find :
- Value of A + B - C = ?
- Value of A - 2B + C = ?
- Value of A + B + 3C = ?
Solution :
- A + B - C = ?
By substituting the value of A , B and C in the above equation , we get :
==> A + B - C
==> 3x² - 5x + 7 + 24 - 8x² + 9 - (7 + 5x² - 3x)
==> 3x² - 5x + 7 + 24 - 8x² - 7 - 5x² + 3x
==> (3x² - 8x² - 5x²) + (-5x + 3x) + (7 + 24 + 9 - 7)
==> (3x² - 13x²) - 2x + 33
==> -10x² - 2x + 33
∴ A + B - C = 33 - 2x - 10x²
- A - 2B + C = ?
By substituting the value of A , B and C in the above equation , we get :
==> A - 2B + C
==> 3x² - 5x + 7 - 2(24 - 8x² + 9) + 7 + 5x² - 3x
==> 3x² - 5x + 7 - 24 + 8x² - 9 + 7 + 5x² - 3x
==> (3x² + 8x² + 5x²) + (-5x - 3x) + (7 - 24 - 9 + 7)
==> 16x² - 8x - 19
∴ A - 2B + C = 16x² - 8x - 19
- A + B + 3C = ?
By substituting the value of A , B and C in the above equation , we get :
==> A + B - 3C
==> 3x² - 5x + 7 + 24 - 8x² + 9 + 3(7 + 5x² - 3x)
==> 3x² - 5x + 7 + 24 - 8x² + 9 + 21 + 15x² - 9x
==> (3x² - 8x² + 15x²) + (-5x - 9x) + (7 + 24 + 9 + 21)
==> 10x² - 14x + 61
∴ A + B - 3C = 10x² - 14x + 61
Therefore,
- A + B - C = 33 - 2x - 10x²
- A - 2B + C = 16x² - 8x - 19
- A + B - 3C = 10x² - 14x + 61
Let,
Find :
(a)
(b)
(c)
Let's find out the value of
Putting the values of and
Remove parentheses.
Combine the like terms.
Let's find out the value of
Putting the values of and
Remove parentheses.
Combine the like terms.
Let's find out the value of
Putting the values of and
Remove parentheses.
Combine the like terms.
(a)
(b)
(c)