Math, asked by johnnydass38jd, 1 month ago

let a(-a,0), b(0,a) and c (a,beta) be the vertices of the triangle abc and g be its centroid. prove that ga²+gb²+gc²=1/3 (ab²+bc²+ca²)​

Answers

Answered by girishreddy123098
0

Answer:

LetA(x1,y1),B(x2,y2)andC(x3,y3)betheverticesof△ABC.

Withoutthelawofgenerality,assumethecentroidofthe

△ABCtobeatorigin,i.e.,G=(0,0).

Centroidof△ABC=[

3

x1+x2+x3

,

3

y1+y2+y3

]

∴x1+x2+x3=0;y1+y2+y3=0

Squaringonbothsides,

x1

2

+x2

2

+x3

2

+2x1.x2+2x2.x3+2x3.x1=0

y1

2

+y2

2

+y3

2

+2y1.y2+2y2.y3+2y3.y1=0−(i)

AB

2

+BC

2

+CA

2

=[(x2−x1)

2

+(y2−y1)

2

]+[(x3−x2)

2

+(y3−y2)

2

]+[(x1−x3)

2

+(y1−y3)

2

]

=(x1

2

+x2

2

−2x1x2+y1

2

+y2

2

−2y1y2)+(x1

2

+x3

2

−2x1x3+y1

2

+y3

2

−2y2y3)

+(x1

2

+x3

2

−2x1x3+y1

2

+y3

2

−2y1y3)

=(2x1

2

+2x2

2

+2x3

2

−2x1x2−2x2x3−2x1x3)+

(2y1

2

+2y2

2

+2y3

2

−y1y2−2y2y3−2y1y3)

=(3x1

2

+3x2

2

+3x3

2

)+(3y1

2

+3y2

2

+3y3

2

)

=3(x1

2

+x2

2

+x3

2

)+3(y1

2

+y2

2

+y3

2

)−(ii)

3(GA

2

+GB

2

+GC

2

)

=3[(x1−0)

2

+(y1−0)

2

+(x2−0)

2

+(y2−0)

2

+(x3−0)

2

+(y3−0)

2

]

=3[x1

2

+y1

2

+x2

2

+y2

2

+x3

2

+y3

2

]

=3(x1

2

+x2

2

+x3

2

)+3(y1

2

+y2

2

+y3

2

)−(iii)

from(ii)&(iii)

AB

2

+BC

2

+CA

2

=3(GA

2

+GB

2

+GC

2

)

Similar questions