Math, asked by saiyambansal, 9 months ago

Let A ={a,b,c}, B={b,c,d}, C={a,b,d,e}, then A ∩ (B U C) *

1 point


Answers

Answered by Anonymous
6

To find :

  • A ∩ (B ∪ C) 

Given :

  • A = {a ,b ,c }
  • B = {b ,c ,d }
  • C = { a ,b ,d ,e }

Solution :

  • (B ∪ C)  :-
  • B = {b ,c ,d }
  • C = { a ,b ,d ,e }

⟹ (B ∪ C)  = {a , b, c ,d , e}

Now,

  • A ∩ (B ∪ C) :-
  • A = {a ,b ,c }
  • (B ∪ C)  = {a , b, c ,d , e}

⟹ A ∩ (B ∪ C)  = { a ,b ,c }

Hence,

  • A ∩ (B ∪ C)  = {a ,b ,c}

━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by PixleyPanda
0

Answer:

Step-by-step explanation:

A={1,2,4,5}, B={2,3,5,6}, C={4,5,6,7}

∴ B∪C={2,3,4,5,6,7}

A−(B∪C)={1}

A−B={1,4}

A−C={1,2}

(A−B)∩(A−C)={1}

we have to verify, A−(B∪C)=(A−B)∩(A−C)

LHS=A−(A∪C)

={1}

RHS=(A−B)∩(A−C)

={1}

Hence,  

A−(B∪C)=(A−B)∩(A−C)

hope it helps

:)

Similar questions