Let A ={a,b,c}, B={b,c,d}, C={a,b,d,e}, then A ∩ (B U C) *
1 point
Answers
Answered by
6
To find :
- A ∩ (B ∪ C)
Given :
- A = {a ,b ,c }
- B = {b ,c ,d }
- C = { a ,b ,d ,e }
Solution :
- (B ∪ C) :-
- B = {b ,c ,d }
- C = { a ,b ,d ,e }
⟹ (B ∪ C) = {a , b, c ,d , e}
Now,
- A ∩ (B ∪ C) :-
- A = {a ,b ,c }
- (B ∪ C) = {a , b, c ,d , e}
⟹ A ∩ (B ∪ C) = { a ,b ,c }
Hence,
- A ∩ (B ∪ C) = {a ,b ,c}
━━━━━━━━━━━━━━━━━━━━━━━━━
Answered by
0
Answer:
Step-by-step explanation:
∴ B∪C={2,3,4,5,6,7}
A−(B∪C)={1}
A−B={1,4}
A−C={1,2}
(A−B)∩(A−C)={1}
we have to verify, A−(B∪C)=(A−B)∩(A−C)
LHS=A−(A∪C)
={1}
RHS=(A−B)∩(A−C)
={1}
Hence,
A−(B∪C)=(A−B)∩(A−C)
hope it helps
:)
Similar questions