Let a and b be complex cube roots of unity. If x=7a+2b and y=2a+7b, then evaluate xy.
Answers
Answered by
0
Answer:
xy = 14a² + 53ab + 14
Step-by-step explanation:
x=7a+2b
y=2a+7b
xy = (7a+2b) (2a+7b)
= 7a (2a+7b) + 2b (2a+7b)
= {(7a X 2a) + (7a X 7b)} + {(2b X 2a) + (2b X 7b)}
= 14a² + 49ab + 4ab + 14b²
= 14a² + 53ab + 14b²
Similar questions