Math, asked by mhw18, 7 months ago

Let a and b be non zero , non collinear vectors . If |a+b| = |a-b| . find the angle between a and b​

Answers

Answered by MaheswariS
8

\textbf{Given:}

\mathsf{\overrightarrow{a}\;and\;\overrightarrow{b}\;are\;two\;non-zero\;vectors\;and}

\mathsf{|\overrightarrow{a}+\overrightarrow{b}|=|\overrightarrow{a}-\overrightarrow{b}|}

\textbf{To find:}

\textsf{The angle between}\;\mathsf{\overrightarrow{a}\;and\;\overrightarrow{b}}

\textbf{Solution:}

\mathsf{Consider,}

\mathsf{|\overrightarrow{a}+\overrightarrow{b}|=|\overrightarrow{a}-\overrightarrow{b}|}

\textsf{Squaring on bothsides we get}

\mathsf{|\overrightarrow{a}+\overrightarrow{b}|^2=|\overrightarrow{a}-\overrightarrow{b}|^2}

\mathsf{|\overrightarrow{a}|^2+|\overrightarrow{b}|^2+2\,\overrightarrow{a}\,.\,\overrightarrow{b}=|\overrightarrow{a}|^2+|\overrightarrow{b}|^2-2\,\overrightarrow{a}\,.\,\overrightarrow{b}}

\mathsf{2\,\overrightarrow{a}\,.\,\overrightarrow{b}+2\,\overrightarrow{a}\,.\,\overrightarrow{b}=0}

\mathsf{4\,\overrightarrow{a}\,.\,\overrightarrow{b}=0}

\mathsf{\overrightarrow{a}\,.\,\overrightarrow{b}=0}

\implies\mathsf{\overrightarrow{a}\perp\overrightarrow{b}}

\therefore\textsf{Angle between the given vectors is}\;\mathsf{90^\circ}

\textbf{Find more:}

If vector A=2i+2j+3k and vector B=3i-2j-4k, find cross product and angle b/w A and B?​

https://brainly.in/question/22534241

For what values of c are the vectors 3i-2j and 2i+3j + ck are perpendicular​

https://brainly.in/question/33019924

Answered by anshu24497
2

\textbf{Given \: :} \\ \mathsf{ \purple{\overrightarrow{a}\;and\;\overrightarrow{b}\;are\;two\;non-zero\;vectors\;and}}</p><p> \\ \mathsf{ \purple{|\overrightarrow{a}+\overrightarrow{b}|=|\overrightarrow{a}-\overrightarrow{b}|}} \\  \\ </p><p>\textbf{To find:} \\ </p><p>\textsf{ \color{orange}{The angle between}}\;\mathsf{ \color{orange}{{\overrightarrow{a}\;and\;\overrightarrow{b}}}} \\  \\ </p><p>\textbf{Solution:} \\ </p><p>\mathsf{ \color{green}{Consider,}} \\ </p><p>\mathsf{ \color{green}{|\overrightarrow{a}+\overrightarrow{b}|=|\overrightarrow{a}-\overrightarrow{b}|}} \\  \\ </p><p>\textsf{ \color{royalblue}{Squaring on both \: sides we get}} \\ </p><p>\mathsf{ \color{royalblue}{|\overrightarrow{a}+\overrightarrow{b}|^2=|\overrightarrow{a}-\overrightarrow{b}|^2}} \\ </p><p>\mathsf{ \color{royalblue}{|\overrightarrow{a}|^2+|\overrightarrow{b}|^2+2\,\overrightarrow{a}\,.\,\overrightarrow{b}=|\overrightarrow{a}|^2+|\overrightarrow{b}|^2-2\,\overrightarrow{a}\,.\,\overrightarrow{b}}}\\ </p><p>\mathsf{ \color{royalblue}{2\,\overrightarrow{a}\,.\,\overrightarrow{b}+2\,\overrightarrow{a}\,.\,\overrightarrow{b}=0}} \\ </p><p>\mathsf{ \color{royalblue}{4\,\overrightarrow{a}\,.\,\overrightarrow{b}=0}} \\ </p><p>\mathsf{ \color{royalblue}{\overrightarrow{a}\,.\,\overrightarrow{b}=0}} \\ </p><p>\implies\mathsf{ \color{red} {\overrightarrow{a}\perp\overrightarrow{b}}} \\ \\  \therefore\textsf{\pink{Angle between the given vectors is}}\;\mathsf{ \pink{90^\circ}}

Similar questions