Math, asked by uttamkumarjena73, 5 hours ago

let a and b be positive integers,show that ✓2 always lies between (a/b) and (a+2b) (a+b)​

Answers

Answered by mathdude500
5

Appropriate Question :-

Let a and b be positive integers,show that ✓2 always lies between (a/b) and (a+2b)/ (a+b).

\large\underline{\sf{Solution-}}

Since, we have to show that,

2 always lies between (a/b) and (a+2b)/(a+b)

So, two cases arises.

Case :- 1

\red{\rm :\longmapsto\:When \: \dfrac{a}{b} >  \sqrt{2}}

Now,

\rm :\longmapsto\:a >  \sqrt{2}b

On squaring both sides, we get

\rm :\longmapsto\: {a}^{2} >  {2b}^{2}

can be rewritten as

\rm :\longmapsto\: {a}^{2} +  {a}^{2}  >  {2b}^{2}  +  {a}^{2}

\rm :\longmapsto\: 2{a}^{2}  >  {2b}^{2}  +  {a}^{2}

can be rewritten as

\rm :\longmapsto\: 2{a}^{2} +  {2b}^{2}   >  {2b}^{2}  +  {a}^{2}  +  {2b}^{2}

\rm :\longmapsto\: 2{a}^{2} +  {2b}^{2}   >  {4b}^{2}  +  {a}^{2}

Now, Adding 4ab on both sides, we get

\rm :\longmapsto\: 2{a}^{2} +  {2b}^{2} + 4ab   >  {4b}^{2}  +  {a}^{2}  + 4ab

\rm :\longmapsto\: 2({a}^{2} +  {b}^{2} + 2ab) >  {(2b)}^{2}  +  {a}^{2}  + 2a(2b)

\rm :\longmapsto\:2 {(a + b)}^{2} >  {(a + 2b)}^{2}

\rm :\longmapsto\: \sqrt{2}  {(a + b)}>  {(a + 2b)}

\bf\implies \: \sqrt{2} > \dfrac{a + 2b}{a + b}

6

Hence,

\bf\implies \:  \dfrac{a + 2b}{a + b} <  \sqrt{2} < \dfrac{a}{b}

Case :- 2

\red{\rm :\longmapsto\:When \: \dfrac{a}{b}  <   \sqrt{2}}

Now,

\rm :\longmapsto\:a  <   \sqrt{2}b

On squaring both sides, we get

\rm :\longmapsto\: {a}^{2}  <   {2b}^{2}

can be rewritten as

\rm :\longmapsto\: {a}^{2} +  {a}^{2}   <   {2b}^{2}  +  {a}^{2}

\rm :\longmapsto\: 2{a}^{2}   <   {2b}^{2}  +  {a}^{2}

can be rewritten as

\rm :\longmapsto\: 2{a}^{2} +  {2b}^{2}    <   {2b}^{2}  +  {a}^{2}  +  {2b}^{2}

\rm :\longmapsto\: 2{a}^{2} +  {2b}^{2}    <   {4b}^{2}  +  {a}^{2}

On adding 4ab on both sides, we get

\rm :\longmapsto\: 2{a}^{2} +  {2b}^{2} + 4ab < {4b}^{2}  +  {a}^{2}  + 4ab

\rm :\longmapsto\: 2({a}^{2} +  {b}^{2} + 2ab )< {(2b)}^{2}  +  {a}^{2}  + 2a(2b)

\rm :\longmapsto\:2 {(a + b)}^{2}  <   {(a + 2b)}^{2}

\rm :\longmapsto\: \sqrt{2}  {(a + b)} <   {(a + 2b)}

\bf\implies \: \sqrt{2}  <  \dfrac{a + 2b}{a + b}

Hence,

\bf\implies \:\dfrac{a}{b}   < \sqrt{2}  <  \dfrac{a + 2b}{a + b}

Hence, from both the two cases, we concluded that

\bf\implies \: \sqrt{2}  \: always \: lies \: between \: \dfrac{a}{b} \:  \: and \:  \:  \dfrac{a + 2b}{a + b}

Similar questions