Let a, b and c be non-zero real numbers satisfying (a ^ 3)/(b ^ 3 + c ^ 3) + (b ^ 3)/(c ^ 3 + a ^ 3) + (c ^ 3)/(a ^ 3 + b ^ 3) = 1; then the value of
a^ 6 b^ 3 +c^ 3 + b^ 6 c^ 3 +a^ 3 + c^ 6 a^ 3 +b^ 3 is
a.1
b. 0
c. -1
d.2
Answers
Given :- Let a, b and c be non-zero real numbers satisfying (a³)/(b³ + c³) + (b³)/(c³ + a³) + (c³)/(a³ + b³) = 1 .
Then the value of :- (a⁶)/(b³ + c³) + (b⁶)/(c³ + a³) + (c⁶)/(a³ + b³) = ?
A) 1
B) 0
C) -1
D) 2
Solution :-
we have,
→ (a³)/(b³ + c³) + (b³)/(c³ + a³) + (c³)/(a³ + b³) = 1
Let :-
- a³ = x
- b³ = y
- c³ = z
so,
→ x/(y + z) + y/(x + z) + z/(x + y) = 1 -------- Eqn.(1)
and,
→ (a⁶)/(b³ + c³) + (b⁶)/(c³ + a³) + (c⁶)/(a³ + b³)
→ x²/(y + z) + y²/(x + z) + z²/(x + y)
adding and subtracting x,y and z in each terms,
→ [x²/(y + z) + x - x] + [y²/(x + z) + y - y] + [z²/(x + y) + z - z]
→ [(x² + xy + yz)/(y + z) - x] + [(y² + xy + yz)/(x + z) - y] + [(z² + xz + yz)/(x + y) - x]
→ {x(x + y + z)/(y + z)} + {y(x + y + z)/(x + z)} + {z(x + y + z)/(x + y)} - (x + y + z)
taking (x + y + z) common
→ (x + y + z)[x/(y + z) + y/(x + z) + z/(x + y) - 1]
putting value from Eqn.(1) ,
→ (x + y + z)(1 - 1)
→ 0 (B) (Ans.)
Learn more :-
if a^2+ab+b^2=25
b^2+bc+c^2=49
c^2+ca+a^2=64
Then, find the value of
(a+b+c)² - 100 = ...
https://brainly.in/question/16231132
JEE mains Question :-
https://brainly.in/question/22246812