Math, asked by Ataraxia, 10 months ago

LET A ,B, AND C BE THE SETS SUCH THAT A UNION B = A UNION C AND A INTERSECTION B =A INTERSECTIO C.SHOW THAT B=C.
 \huge \color{red}{dont \: spam}
IRRELEVANT ANSWERS WILL REPORTED....

Answers

Answered by shadowsabers03
16

Given,

\longrightarrow\sf{A\cup B=A\cup C}

Taking intersection with \sf{C,}

\longrightarrow\sf{(A\cup B)\cap C=(A\cup C)\cap C}

\longrightarrow\sf{(A\cap C)\cup(B\cap C)=(A\cap C)\cup (C\cap C)}

\longrightarrow\sf{(A\cap C)\cup(B\cap C)=(A\cap C)\cup C}

Cancelling \sf{A\cap C} from both sides,

\longrightarrow\sf{B\cap C=C}

\Longrightarrow\sf{C\subseteq B\quad\quad\dots(1)}

Similarly,

\longrightarrow\sf{A\cup B=A\cup C}

Taking intersection with \sf{B,}

\longrightarrow\sf{(A\cup B)\cap B=(A\cup C)\cap B}

\longrightarrow\sf{(A\cap B)\cup(B\cap B)=(A\cap B)\cup (C\cap B)}

\longrightarrow\sf{(A\cap B)\cup B=(A\cap B)\cup (B\cap C)}

Cancelling \sf{A\cap B} from both sides,

\longrightarrow\sf{B=B\cap C}

\Longrightarrow\sf{B\subseteq C\quad\quad\dots(2)}

Combining (1) and (2), we get,

\longrightarrow\underline{\underline{\sf{B=C}}}

Hence Proved!

Properties Used:-

\sf{1.\quad A\cap B=B\cap A\quad (Commutative\ Law)}

\sf{2.\quad A\cap A=A\quad(Idempotent\ Law)}

\sf{3.\quad (A\cup B)\cap C=(A\cap C)\cup(B\cap C)\quad(Distributive\ Law)}

\sf{4.\quad A\cap B=B\quad\iff\quad B\subseteq A}

\sf{5.\quad A=B\quad\iff\quad A\subseteq B\quad\!and\quad\!B\subseteq A}

Answered by pulakmath007
14

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

1. \: \sf{ \: A \cup \: B =  \: B \cup \:A  }

2. \: \sf{ \: A \cap \: B =  \: B \cap \:A  }

3. \:   \: \sf{  A \cap \: (A \cup \: B )\: } = A

4. \:  \:  \sf{ (A\cap\:  B)\cup (A  \cap \: C ) \:  = A\cap\:(  B \cup \: C ) \: }

GIVEN

 \sf{ \: A \cup \: B =  A \cup \: C \:  \: and \: A \cap \: B  = A \cap \: C \:  \: }

TO PROVE

 \sf{B = C}

PROOF

 \sf{B}

 \sf{ = B \cap \: (B \cup \: A )\: } \:  \: (using \: \: formula \:  3)

 \sf{ = B \cap \: (A \cup \: B )\: }

 \sf{ = B \cap \: (A \cup \: C )\: } \:  \:(  \: given)

 \sf{ =( B \cap \: A )\cup (B \cap\: C )\: }(using \: \: formula \:  4)

 \sf{ =(B \cap\: C )\cup ( B \cap \: A ) \: \: }(using \: \: formula \:  1)

 \sf{ =( C\cap\:  B)\cup ( A \cap \: C ) \: \: }(given)

 \sf{ =( C\cap\:  B)\cup ( C \cap \: A ) \: \: }(using \: \: formula \:  2)

 \sf{ = C \: \cap\:  ( \: B\cup  \: A ) \: \: }(using \: \: formula \:  4)

 \sf{ = C \: \cap\:  ( \: C\cup  \: A ) \: \: }(given)

 \sf{ = C} \:  \:  \:  \: (using \: \: formula \:  3)

Hence proved

Similar questions