Let A, B be the centres of two circles of equal radii; draw them so that each one of them passes through the centre of the other. Let them intersect at C and D.
Examine whether and are at right angles.
The answer is
Let us draw two circles of same radius which are passing through the centres of the other circle.
Here, point A and B are the centres of these circles and these circles are intersecting each other at point C and D.
In quadrilateral ADBC,
AD = AC (Radius of circle centered at A)
BC = BD (Radius of circle centered at B)
As radius of both circles are equal, therefore, AD = AC = BC = BD
Hence, is a rhombus and in a rhombus, the diagonals bisect each other at 90°. Hence, and are at right angles.
But I think they form perpendicular bisectors and not right angle . So what would be the correct answer ?
Answers
Answered by
1
plzzz tell me about financial arithmetic
Answered by
1
Draw two circles of equal radius taking a and b as their centre such that one of them passes through the centre of the other they intersect at c and d join ab and cd
Similar questions