Math, asked by narendrareddysangati, 6 months ago

let a,b,c are lengths of three sides of a triangle ABC,a>b>c,2b=a+c and b is positive integer,if a^2+b^2+c^2=84, then b=​

Answers

Answered by sreeharikaiprath100
3

Answer:

Solution :

a+b>c

2b−c+b>c

3b−c>c

3b>2c

bc>23

Mark me the Brainliest Please

Answered by prachikalantri
0

2b=a+c

u^+a=b+d

c=b-d

b^2+d^2+2bd+b^2+b^2+d^2-2bd=84

\Rightarrow 3b^2+2d^2=84

\Rightarrow b^2=\frac{84-2d^2}{3} \ge0

\Rightarrow 84-2d^2\ge0  d^2\le42

\Rightarrow \pm1,\pm2,\pm3,\pm4,\pm5,\pm6

Since, \frac{2d^2}{3} should also be integer,

\Rightarrow d should be either \pm 3/\pm6

if d=\pm3

b^2=28-\frac{2(9)}{3}=22

b is not an integer

if d=\pm 6

b^2=28-\frac{2(36)}{3}=4

b=2

positive integer

b=2

b^2=\frac{84-2d^2}{3}=28-\frac{2d^2}{3}

Since 'b' is an integer

28-\frac{2d^2}{3} should also be integer

Also b^2\ge0\\28-\frac{2d^2}{3}\ge0\\ \Rightarrow 84-2d^2 \ge 0\\\Rightarrow d^2\le42\\\Rightarrow d=1,2,3,4,5,6

Also for

\frac{2d^2}{3} to be integer

d should be either \frac{3}{6}.

if d=b,

\Rightarrow b^2=28-\frac{2d^2}{3}\\ =28-\frac{2(36)}{3} \\=4

\Rightarrow b=2 \Rightarrow a=8\\

c=b-d

=2-6=4 (not possible)

So, d=3

\Rightarrow b^2=28-\frac{2d^2}{3} =28-\frac{2}{3}(9)

b=22

a=b+d=22+3=25\\c=b-d=22-3=19

a > b > c

2b=a+c

Let

a=b+d\\c=b-d

b^2+d^2+2bd+b^2+b^2+d^2-2bd=84

\Rightarrow 3b^2+2d^2=84

#SPJ2

Attachments:
Similar questions