let a,b,c be real numbers ( a is not zero) alpha and beta be the roots is equation ax^2+bx+ c=0..Express the roots of the equation a^3x^2+ abcx + c^3=0 in terms of alpha and beta
randallallenhol:
can you help me out a little with this question??
Answers
Answered by
5
Equation ax2+bx+c=0ax2+bx+c=0 has roots αα and bb
α+β=−ba+b=−ba
αb=caαb=ca
Equation Ax2+Bx+C=0Ax2+Bx+C=0 has roots α3α3and b3b3
CA=α3b3=(αb)3=c3a3CA=α3b3=(αb)3=c3a3
BA=−(α3+b3)=3αb(α+b)−(α+b)3=3(ca)(−ba)−(−ba)3=b3−3abca3BA= −(α3+b3)=3αb(α+b)−(α+b)3=3(ca)(−ba)−(−ba)3=b3−3abca3
A=a3,B=b3−3abc,C=c3A=a3,B=b3−3abc,C=c3
Quadratic equation with roots α3α3 and b3b3:
a3x2+b(b2−3ac)x+c3=0
α+β=−ba+b=−ba
αb=caαb=ca
Equation Ax2+Bx+C=0Ax2+Bx+C=0 has roots α3α3and b3b3
CA=α3b3=(αb)3=c3a3CA=α3b3=(αb)3=c3a3
BA=−(α3+b3)=3αb(α+b)−(α+b)3=3(ca)(−ba)−(−ba)3=b3−3abca3BA= −(α3+b3)=3αb(α+b)−(α+b)3=3(ca)(−ba)−(−ba)3=b3−3abca3
A=a3,B=b3−3abc,C=c3A=a3,B=b3−3abc,C=c3
Quadratic equation with roots α3α3 and b3b3:
a3x2+b(b2−3ac)x+c3=0
Similar questions