Let a, b,c,d be distinct real numbers such that a, b are roots of x2 – 5cx – 6d = 0, and c, d are
roots of x2 - 5ax - 6b = 0. Then b + d is
(A) 180
(B) 162
(C) 144
(D) 126
Answers
Here, a and b are roots of the equation x2−5cx−6d=0
∴ a+b=1−(−5)c=5c ----- ( 1 )
And
⇒ a.b=1−6d=−6d ----- ( 2 )
Now, c and d are roots of the equation x2−5ax−6d=0
∴ c+d=1−(−5a)=5a ----- ( 3 )
⇒ cd=1−6b=−6b ----- ( 4 )
Adding ( 1 ) and ( 2 ),
⇒ a+b+c+d=5c+5a
⇒ b+d=4c+4a
⇒ b+d=4(c+a) ---- ( 5 )
Now dividing ( 1 ) by ( 2 ) we get,
⇒ c+da+b=5a5c
⇒ 5a2+5ab=5c2+5cd
⇒ 5a2+5(−6d)=5c2+5(−6b) [ From ( 2 ) and ( 4 ) ]
⇒ 5a2−30d=5c2−30b
⇒ 5(a2−c2)=−30b+30d
⇒ (a+c)(a−c)=−6b+6d
⇒ (a+c)(a−c)=−6(5c−a)+6(5a−c) [ From ( 1 ) and ( 2 ) ]
⇒ (a+c)(a−c)=−30c+6a+30a−6c
⇒ (a+c)(a−c)=−36c+36a
⇒ (a+c)(a−c)=36(a−c)
⇒ a+c=36
Substituting value of a+c in equation ( 5 ) we get,
⇒ b+d=4(36)
∴ b+d=144