Let a, b, c, d, e be five numbers satisfying the following conditions a + b + c + d + e=0; ABC+ABD+ABE+ACD+ACE+ ADE+BCD+BCE+BDE+CDE=33. Find the value of a^3 + b^3 + c^3 + d^3 + e^3.
Answers
Step-by-step explanation:
plz mark me as the brainliest.
Answer: 99
Step-by-step explanation:
Given: a, b, c, d, e be five numbers satisfying the following conditions a + b + c + d + e=0; ABC+ABD+ABE+ACD+ACE+ ADE+BCD+BCE+BDE+CDE=33.
To Find: The value of a^3 + b^3 + c^3 + d^3 + e^3.
Solution:
a + b + c + d + e=0 ....(i)
ABC+ABD+ABE+ACD+ACE+ ADE+BCD+BCE+BDE+CDE=33 .....(ii)
(a + b + c + d + e)³ = a³ + b³ + c³ + d³ + e³ + 3a²b + c + d + e + 3b²c + d + e + a + 3c²d + e + a + b + 3d²e + a + b + c + 3e²a + b + c + d + 6abc + abd + abc + ...
∵ a + b + c + d + e=0
b + c + d + e = -a
So, 3a²b + c + d + e = -3a³
Similarly, we get:
3b²c + a + d + e = -3b³
3c²d + a + b + e = -3c³
3d²e + a + b + c = -3d³
3e²a + b + c + d = -3e³
Now, from equation (i)
2a³ + b³ + c³ + d³ + e³ = 6abc + abd + abc + ...
⇒ a³ + b³ + c³ + d³ + e³ = 3abc + abd + abc + ...
⇒ a³ + b³ + c³ + d³ + e³ = 3 × 33 = 99
Hence, the required value of a³ + b³ + c³ + d³ + e³ is 99.
#SPJ3