let a, b, c € R be all non - zero and satisfy a³+b³+c³ = 2if the matrix A = [a b c ]
[b c a ]
[ c a b ]
satisfies A transpose ×A = I then the value of ABC can be
Answers
Given : a, b, c € R be all non - zero and satisfy a³+b³+c³ = 2
A' * A = I
A' is A transpose
To Find : value of a, b and c
Solution:
A' * A = I
=> a² + b² + c² = 1
ab + bc + ac = 0
a² + b² + c² = 1
a, b, c € R be all non - zero
=> a³+b³+c³ < 1
but given a³+b³+c³ = 2
Hence no ( a , b , c) exist satisfying this
Learn More:
order of the matrix (AB) transpose is 5 * 3 if A is a matrix of order 3x4 ...
brainly.in/question/9785304
Step-by-step explanation:
Solution:
\begin{gathered}A=\left[\begin{array}{ccc}a&b&c\\b&c&a\\c&a&b\end{array}\right]\end{gathered}
A=
⎣
⎢
⎡
a
b
c
b
c
a
c
a
b
⎦
⎥
⎤
\begin{gathered}A^T=\left[\begin{array}{ccc}a&b&c\\b&c&a\\c&a&b\end{array}\right]\end{gathered}
A
T
=
⎣
⎢
⎡
a
b
c
b
c
a
c
a
b
⎦
⎥
⎤
A' * A = I
=> a² + b² + c² = 1
ab + bc + ac = 0
a² + b² + c² = 1
a, b, c € R be all non - zero
=> a³+b³+c³ < 1
but given a³+b³+c³ = 2