Math, asked by Nishanth1208, 7 months ago

let a, b, c € R be all non - zero and satisfy a³+b³+c³ = 2if the matrix A = [a b c ]
[b c a ]
[ c a b ]
satisfies A transpose ×A = I then the value of ABC can be​

Answers

Answered by amitnrw
0

Given : a, b, c € R be all non - zero and satisfy a³+b³+c³ = 2

A=\left[\begin{array}{ccc}a&b&c\\b&c&a\\c&a&b\end{array}\right]

A' * A = I

A'   is A transpose

To Find :  value of  a, b and c

Solution:

A=\left[\begin{array}{ccc}a&b&c\\b&c&a\\c&a&b\end{array}\right]

A^T=\left[\begin{array}{ccc}a&b&c\\b&c&a\\c&a&b\end{array}\right]

A' * A   = I  

=> a² + b²  + c²   = 1

    ab + bc + ac  = 0

a² + b²  + c²   = 1  

a, b, c € R be all non - zero

=> a³+b³+c³  < 1

but given a³+b³+c³  =   2

Hence no ( a , b , c) exist satisfying this

Learn More:

order of the matrix (AB) transpose is 5 * 3 if A is a matrix of order 3x4 ...

brainly.in/question/9785304

Answered by barani79530
0

Step-by-step explanation:

Solution:

\begin{gathered}A=\left[\begin{array}{ccc}a&b&c\\b&c&a\\c&a&b\end{array}\right]\end{gathered}

A=

a

b

c

b

c

a

c

a

b

\begin{gathered}A^T=\left[\begin{array}{ccc}a&b&c\\b&c&a\\c&a&b\end{array}\right]\end{gathered}

A

T

=

a

b

c

b

c

a

c

a

b

A' * A = I

=> a² + b² + c² = 1

ab + bc + ac = 0

a² + b² + c² = 1

a, b, c € R be all non - zero

=> a³+b³+c³ < 1

but given a³+b³+c³ = 2

Similar questions