Math, asked by jeevansurya360, 1 month ago

Let A = {b, d, e, g, h} and B = {a, e, c, h}. Verify that n (A – B) = n (A) – n (A ∩ B).

Answers

Answered by MrMonarque
1

Hello, Buddy!!

Refer The Attachment ⬆️

Hence, Proved

  • \longmapsto\;\bold{n (A – B) = n (A) – n (A ∩ B)}

\boxed{\tt{@MrMonarque}}

Hope It Helps You ✌️

Attachments:
Answered by nafeess2019
0

Step-by-step explanation:

Given :-

A = {b, d, e, g, h} , n(A) = 5

B = (a, e, c, h}      , n(B) = 4

To Prove :-

n(A - B) = n(A) - n(A ∩ B)

Solution :-

A ∩ B = {b, d, e, g, h} ∩ {a, e, c, h}

          = {e, h}

∴n(A ∩ B) = 2                                             (1)

A - B =  {b, d, e, g, h} - {a, e, c, h}

        =  {b, d, g}

∴n(A - B) = 3                                               (2)

By substituting (1) and (2) in n(A - B) = n(A) - n(A ∩ B), we get-

n(A - B) = 5 - 2

            = 3 = n(A - B)

Hence, proved that, n(A - B) = n(A) - n(A ∩ B)

Similar questions