Chemistry, asked by khuranatanya7688, 10 months ago

Let a, b, x and y be real numbers such that a - b = 1 and y ≠ 0. If the complex number z = x + iy satisfies
Im (az+b/z+1) = y, then which of the following is(are) possible value(s) of x ?
[A] -1-√1-y²
[B] 1+√1+y²
[C] 1-√1+y²
[D] -1+√1-y²

Answers

Answered by Anonymous
6

ANSWER:

  • Options A) and D) are correct.

 \\  \\

GIVEN:

  • a, b, x and y be real numbers.

  • a - b = 1 and y ≠ 0.

  • The complex number z = x + iy satisfies Im {(az+b) / (z+1)} = y.

 \\  \\

TO FIND:

  • The possible values of x.

 \\  \\

EXPLANATION:

 \sf \dashrightarrow  Im\bigg[  \dfrac{az+b}{ z+1}\bigg] = y\\  \\

\bf We\ know\ that \ z = x + iy \\ \\

 \sf \dashrightarrow  Im\bigg[\dfrac{a( x + iy)+b}{ x + iy+1}\bigg] = y\\  \\

 \sf \dashrightarrow Im\bigg[ \dfrac{ax + aiy+b}{ x + 1 + iy} \bigg]= y\\  \\

 \sf \dashrightarrow Im\bigg[ \dfrac{ax + aiy+b}{ x + 1 + iy} \times  \frac{x+ 1  -  iy}{x+ 1  -  iy}  \bigg]= y\\  \\

 \sf \dashrightarrow Im\bigg[ \dfrac{(ax + aiy+b)(x+ 1  -  iy)}{( x + 1  {)}^{2}  -  (iy {)}^{2} }\bigg]= y\\  \\

 \sf \dashrightarrow \dfrac{ - y(ax + b) + ay(x + 1)}{( x + 1  {)}^{2}  -  (-  y^{2}) }= y\\  \\

 \sf \dashrightarrow \dfrac{ -(ax + b) + a(x + 1)}{( x + 1  {)}^{2}  -  (-  y^{2}) }= 1\\  \\

 \sf \dashrightarrow \dfrac{ -ax  -  b + ax + a}{( x + 1  {)}^{2}  -  (-  y^{2}) }= 1\\  \\

 \sf \dashrightarrow \dfrac{ a-b}{( x + 1  {)}^{2}  -  (-  y^{2}) }= 1\\  \\

\bf We\ know\ that \ a - b = 1 \\ \\

 \sf \dashrightarrow \dfrac{ 1}{( x + 1  {)}^{2}  -  (-  y^{2}) }= 1\\  \\

 \sf \dashrightarrow  (x + 1  {)}^{2}   +  y^{2}= 1\\  \\

 \sf \dashrightarrow  (x + 1  {)}^{2}  =  1 -   y^{2}\\  \\

 \sf \dashrightarrow  x + 1  = \pm  \sqrt{ 1 -   y^{2}}\\  \\

 \sf \dashrightarrow  x  =  - 1 \pm  \sqrt{ 1 -   y^{2}}\\  \\

 \bf Hence\ the\ value \ of \  x  =  - 1 \pm  \sqrt{ 1 -   y^{2}}

Similar questions