Math, asked by Shirin244, 10 months ago

Let a be the point where the curve 5a^2x^3+10ax^2+x+2y-4 meeys y-axis. then the equation of tangent to the curve at the point a meets the curve again is?

Answers

Answered by MaheswariS
3

\textbf{Given:}

\text{Equation of the curve is $5a^2\,x^3+10a\,x^2+x+2y-4=0$}

\textbf{To find:}

\text{Equation of the tangent at the point where the curve meets y axis}

\textbf{Solution:}

5a^2\,x^3+10a\,x^2+x+2y-4=0

\text{To find the points where the curve meets y axis, put x=0}

\implies\,2y-4=0

\implies\,y=2

\therefore\textbf{(0,2) is the required point at which the curve meets y axis}

5a^2\,x^3+10a\,x^2+x+2y-4=0

\text{Differentiate with respect to x}

5a^2(3x^2)+10a(2x)+1+2\,\dfrac{dy}{dx}=0

15a^2\,x^2+20a\,x+1+2\,\dfrac{dy}{dx}=0

2\,\dfrac{dy}{dx}=-(15a^2\,x^2+20a\,x+1)

\dfrac{dy}{dx}=\dfrac{-(15a^2\,x^2+20a\,x+1)}{2}

\textbf{Slope of tangent}

m=(\dfrac{dy}{dx})_{(0,2)}

m=\dfrac{-(15a^2\,(0)^2+20a\,(0)+1)}{2}

m=\dfrac{-1}{2}

\textbf{The equation of tangent is}

y-y_1=m(x-x_1)

y-2=\frac{-1}{2}(x-0)

y-2=\frac{-x}{2}

2y-4=-x

\implies\bf\,x+2y-4=0

\therefore\textbf{The required tangent is x+2y-4=0}

Find more:

Equation of the tangent to the curve y = 1-e^-x/2 at the point where the curve cuts y axis is

https://brainly.in/question/6188805

Similar questions