Math, asked by Gopisundar, 2 months ago

Let A be the sum of the first 20 terms and B be the sum of the first 40 terms of the series
 {1}^{2}  + 2. {2}^{2}  +  {3}^{2}  + 2. {4}^{2}  +  {5}^{2}  + 2. {6}^{2}  + ....
 \rm \: if \: B-2A = 100 \lambda, \: the n \:  \lambda \: is \: equal \: to \:

Answers

Answered by s02371joshuaprince47
2

Answer:

248

Step-by-step explanation:

A=1+2.2^2+32+2.4^2+⋯+20.202  

B=1+2.22+32+2.42+⋯+40.402

For A,

We can split series into two parts

A=12+22+22+32+4242+cdots+202+202

A=12+22+32+42+cdots+202+22+42+62+cdots+202

General formula for sum of squares of first n natural numbers is

S=n(n+1)(2n+1)6

A=20(20+1)(2(20)+1)6+22(12+22+32+42+cdots+102)

A=20(20+1)(2(20)+1)6+22(10(10+1)(2(10)+1)6)

A=4410

Similarity we can find value for B also

B=33620

B−2A=24800

Therefore, λ=248

Answered by ApprenticeIAS
51

 \underline{ \underline{ \sf \red{Question}}}  \red:

Let A be the sum of the first 20 terms and B be the sum of the first 40 terms of the series

 {1}^{2} + 2. {2}^{2} + {3}^{2} + 2. {4}^{2} + {5}^{2} + 2. {6}^{2} + ....

 \rm \: if \: B-2A = 100 \lambda, \: the n \: \lambda \: is \: equal \: to \:

 \underline{ \underline{ \sf \red{Answer}}}  \red:

 \rm{We \:  have,}

 \rm {1}^{2} + 2. {2}^{2} + {3}^{2} + 2. {4}^{2} + {5}^{2} + 2. {6}^{2} + ....

 \rm \: A  =  \: sum \: of \: first \: 20 \: terms

 \rm B = sum \: of \: first \: 40 \: terms \\

 \rm \therefore \: A  =  {1}^{2}  + 2. {2}^{2}  +  {3}^{2}  + 2. {4}^{2}  +  {5}^{2}  + 2. {6}^{2}  + .... + 2. {20}^{2}  \\

 \rm \: A  = ( {1}^{2}  +  {2}^{2}  +  {3}^{2}  + ... +  {20}^{2} ) + ( {2}^{2}  +  {4}^{2}  +  {6}^{2}  + ... +  {20}^{2} ) \\

 \rm \: A  = ( {1}^{2}  +  {2}^{2}  +  {3}^{2}  + ... +  {20}^{2} ) + 4( {1}^{2}  +  {2}^{2}  +  {3}^{2}  + ... +  {10}^{2} ) \\

 \rm \: A =  \dfrac{20 \times 21 \times 41}{6}  +  \dfrac{4  \times  10 \times 11 \times 21}{6}  \\

 \rm \: A \:  =  \dfrac{20 \times 21}{6}(41 + 22)   \\

  \boxed{ \boxed{\rm \: A \:  =  \dfrac{20 \times 41 \times 63}{6} }} -  -  - (1) \\

 \sf \red{Similarly} \\

 \rm \: B = ( {1}^{2}  +  {2}^{2}  +  {3}^{2}  + ... +  {40}^{2} ) + 4( {1}^{2}  +  {2}^{2}  + ... +  {20}^{2} ) \\

 \rm \: B \:  =   \dfrac{40 \times 41 \times 81}{6}  +  \dfrac{4 \times 20 \times 21 \times 41}{6}  \\

 \rm \: B =  \dfrac{40 \times 41}{6} (81 + 42) \\

 \boxed{ \boxed{ \rm \: B =  \dfrac{40 \times 41 \times 123}{6} }} -  -  - (2) \\

 \sf{Now ;  \:  \red{B-2A = 100 \lambda}}

  \therefore \:  \dfrac{40 \times 41 \times 123}{6}  -  \dfrac{2 \times 20 \times 21 \times 63}{6}  = 100 \lambda \\

 \implies \:  \dfrac{40}{6} (5043 - 1323) = 100 \lambda

 \implies \dfrac{40}{6}  \times 3720 = 100 \lambda

 \implies \: 40 \times 620 = 100 \lambda

 \implies  \: \lambda \:  =  \dfrac{40 \times 620}{100}

 \boxed{ \boxed{ \lambda \:  =  \: 248}} \\

 \underline{\underline{\sf\red{Formula \: Used}}} \red{:}

 \rm \: Squares  \: of \:  first  \: 'n'  \: natural  \: numbers \:   \implies \\  \\ \rm \boxed{ \boxed{  \sum \:  {n}^{2}  =  \dfrac{n(n + 1)(2n + 1)}{6} }}

Similar questions