Math, asked by Wafeeqah7516, 11 months ago

Let a=i-j,b=j-k,c=k-i and d is a unit vector such that a.d=0=[bcd].Find d.

Answers

Answered by guptasingh4564
11

Therefore the value  \overrightarrow{d}=\sqrt{\frac{1}{6} } i+\sqrt{\frac{1}{6} } j-2\sqrt{\frac{1}{6} } k  and \overrightarrow{d}=-\sqrt{\frac{1}{6} } i-\sqrt{\frac{1}{6} } j+2\sqrt{\frac{1}{6} } k

Step-by-step explanation:

Given;

\overrightarrow{a}=i+j ,  \overrightarrow{b}=j-k and \overrightarrow{c}=k-i

Let,

\overrightarrow{d}=pi+qj+rk

From question,

   \overrightarrow{a}\times \overrightarrow{d}=0

(i-j)\times (pi+qj+rk)=0

p-q=0

p=q

Then,

\overrightarrow{d}=pi+pj+rk

And also,

  \overrightarrow{b}.\overrightarrow{c}.\overrightarrow{d}=0

\overrightarrow{b}.(\overrightarrow{c}\times \overrightarrow{d})=0

\overrightarrow{c}\times \overrightarrow{d}=(k-i)\times (pi+pj+rk)= i(-p)-j(-r-p)+k(-p)= -pi+(r+p)j-pk

\overrightarrow{b}.(\overrightarrow{c}\times \overrightarrow{d})=(j-k).(-pi+(r+p)j-pk)=0

r+p+p=0

r=-2p

We know,

\left |\overrightarrow{d}\right |=\sqrt{p^{2} +q^{2} +r^{2}} =1

p^{2} +q^{2} +r^{2} =1

p^{2} +p^{2} +4p^{2} =1

p^{2} =\frac{1}{6}

Then,

p=\sqrt{ \frac{1}{6}}  or p=-\sqrt{ \frac{1}{6}}

If p=\sqrt{ \frac{1}{6}}  then q=\sqrt{ \frac{1}{6}} , r=-2\sqrt{ \frac{1}{6}}

and p=-\sqrt{ \frac{1}{6}} then q=-\sqrt{ \frac{1}{6}} , r=2\sqrt{ \frac{1}{6}}

Then,

The value  \overrightarrow{d}=\sqrt{\frac{1}{6} } i+\sqrt{\frac{1}{6} } j-2\sqrt{\frac{1}{6} } k  and \overrightarrow{d}=-\sqrt{\frac{1}{6} } i-\sqrt{\frac{1}{6} } j+2\sqrt{\frac{1}{6} } k

Similar questions