Let A =R-{3},B=R-{1}, Let f: A+ B be defined by f(x) = * - 3
then
Answers
Answered by
11
A=R−{3}
B=R−{1}
f:A→B
f(x)=x−3x−2
f(x1)=f(x2)
x1−3x1−2=x2−3x2−2
(x2−3)(x1−2)=(x2−2)(x1−3)
x1x2−3x1−2x2+6=x1x2−3x2−2x1+6
−3x1−2x2=−3x2−2x1
−x1=−x2
x1=x2
So, f(x) is one-one
f(x)=x−3x−2
y=x−3x−2
y(x−3)=x−2
yx−3y=x−2
yx−x=3y−2
x(y−1)=3y−2
x=(y−1)3y−2
f(x)=x−3x−2
=y−13y−2−3y−13y−2−2
=y−13y−2−3(y−1)y−13y−2−2(y−1)
=3y−2−3y+33y−2−2y+2
=−2+33y−2y
=y
f(x)=y
f(x) is onto.
So f(x) is bijective and invertible
f(x)=x−3x−2
y=x−3x−2
x=y−3y−2
x(y−3)=y−2
xy−3x=y−2
xy−y=3x−2
y(x−1)=3x−2
y=x−13x−2
f−1(x)=x−13x−2\
hope it helps you
Similar questions