Math, asked by IamIronMan0, 8 hours ago

Let a set S={ 1 , 2 , 3 , 4 } . Now in how many ways subsets A , B and C can be selected from S such that
A \cup B  \cup C   = S

Answers

Answered by ProximaNova
20

Answer:

51

Step-by-step explanation:

The given set, S = { 1 , 2 , 3 , 4 }

Here the Power set of S is given as :

:\longmapstoP(S) = { {1} , {2} , {3} , {4} , {1,2} , {1,3} , {1,4} , {2,3} , {2,4} , {3,4} , {1,2,3} , {1,2,4} , {1,3,4} , {2,3,4} , {1,2,3,4} , ф }

Now , we can select the sets A, B, C , such that A \cup B \cup C = S

The possible values are,

\twoheadrightarrow A = {1,2,3,4} , B = ф , C = ф

\twoheadrightarrow A = {1,2} , B = {3} , C = {4}

\twoheadrightarrow A = {1,2} , B = {4} , C = {3}

\twoheadrightarrow A = {2,3} , B = {1} , C = {4}

\twoheadrightarrow A = {2,3} , B = {4} , C = {1}

\twoheadrightarrow A = {3,4} , B = {1} , C = {2}

\twoheadrightarrow A = {3.4} , B = {2} , C = {1}

\twoheadrightarrow A = {1,4} , B = {2} , C = {3}

\twoheadrightarrow A = {1,4} , B = {3} , C = {2}

\twoheadrightarrow A = {1,2,3} , B = {4} , C = ф

\twoheadrightarrow A = {1,2,3} , B = ф , C = {4}

\twoheadrightarrow A = {1,2,4} , B = {3} , C = ф

\twoheadrightarrow A = {1,2,4} , B = ф , C = {3}

\twoheadrightarrow A = {1,3,4} , B = {2} , C = ф

\twoheadrightarrow A = {1,3,4} , B = ф , C = {2}

\twoheadrightarrow A = {2,3,4} , B = {1} , C = ф

\twoheadrightarrow A = {2,3,4} , B = ф , C = {1}

These all in total are for A and are 17

For B, C these are also 17

Thus , total ways of selecting A, B, C such that A \cup B \cup C = S is = 17 × 3 = 51

\color{#FF7968}{\rule{36pt}{7pt}}\color{#FEDD8E}{\rule{36pt}{7pt}}\color{#FBBE2E}{\rule{36pt}{7pt}}\color{#60D399}{\rule{36pt}{7pt}}\color{#6D83F3}{\rule{36pt}{7pt}}

Answered by as3801504
66

Answer:

{ \boxed{\mathbb{\red{⛄answer♡࿐⛄}}}} \\ 51 \\  \\ </p><p></p><p> \underline{ \boxed{\mathbb{\red{⛄࿐⛄Step-by-step explanation:}}}} \\  \\ </p><p></p><p>The given set, S = { 1 , 2 , 3 , 4 } \\ </p><p></p><p>Here the Power set of S is given as : \\ </p><p></p><p>:\longmapsto:⟼ P(S) = { {1} , {2} , {3} , {4} , {1,2} , {1,3} , {1,4} , {2,3} , {2,4} , {3,4} , {1,2,3} , {1,2,4} , {1,3,4} , {2,3,4} , {1,2,3,4} , ф } \\ </p><p></p><p>Now , we can select the sets A, B, C , such that A \cup B \cup C = SA∪B∪C=S \\ </p><p></p><p>The possible values are, \\ </p><p></p><p>\twoheadrightarrow↠ A = {1,2,3,4} , B = ф , C = ф \\ </p><p></p><p>\twoheadrightarrow↠ A = {1,2} , B = {3} , C = {4} \\ </p><p></p><p>\twoheadrightarrow↠ A = {1,2} , B = {4} , C = {3} \\ </p><p></p><p>\twoheadrightarrow↠ A = {2,3} , B = {1} , C = {4} \\ </p><p></p><p>\twoheadrightarrow↠ A = {2,3} , B = {4} , C = {1}</p><p></p><p>\twoheadrightarrow↠ A = {3,4} , B = {1} , C = {2} \\ </p><p></p><p>\twoheadrightarrow↠ A = {3.4} , B = {2} , C = {1} \\ </p><p></p><p>\twoheadrightarrow↠ A = {1,4} , B = {2} , C = {3} \\ </p><p></p><p>\twoheadrightarrow↠ A = {1,4} , B = {3} , C = {2} \\ </p><p></p><p>\twoheadrightarrow↠ A = {1,2,3} , B = {4} , C = ф \\ </p><p></p><p>\twoheadrightarrow↠ A = {1,2,3} , B = ф , C = {4} \\ </p><p></p><p>\twoheadrightarrow↠ A = {1,2,4} , B = {3} , C = ф \\ </p><p></p><p>\twoheadrightarrow↠ A = {1,2,4} , B = ф , C = {3} \\ </p><p></p><p>\twoheadrightarrow↠ A = {1,3,4} , B = {2} , C = ф \\ </p><p></p><p>\twoheadrightarrow↠ A = {1,3,4} , B = ф , C = {2} \\ </p><p></p><p>\twoheadrightarrow↠ A = {2,3,4} , B = {1} , C = ф \\ </p><p></p><p>\twoheadrightarrow↠ A = {2,3,4} , B = ф , C = {1} \\ </p><p></p><p>These all in total are for A and are 17 \\ </p><p></p><p>For B, C these are also 17 \\ </p><p></p><p>Thus , total ways of selecting A, B, C such that A \cup B \cup C = SA∪B∪C=S is = 17 × 3 = 51 \\ </p><p></p><p>

.

{ \boxed{\mathbb{\pink{⛄hope \: it \: help \: you♡࿐⛄ }}}}

Similar questions