Math, asked by praislinpeter, 9 months ago

let A= { x : x∈Z and x² ≤ 4 } and { x: x ∈ R x² -3x +2=0} i) A=B ii) A≠B iii) A∈B. Iv) A∉B

Answers

Answered by sindusingh89
3

Answer:

               ii) A≠B

Step-by-step explanation:

A = {n:n EZ and n² < 4}

Integers...... -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10....

                                                                       n² = 4

                                                                        n = ±2

                                                                       So,-2≤n≤2

(0)^{2}=0 <4

(1)^{2}=1 <4

(2)^{2}=4=4

(3)^{2}=9>4=0

(-1)^{2}=1<4

(-2)^{2}=4b=4

(-3)^{2}= 9>4  =0

The elements are -2, -1, 0, 1, 2

               So, A = {-2, -1, 0, 1, 2}

B = {x:x ER and x² - 3x + 2 = 0}.

              Solving x² - 3x + 2 = 0,

              x²-2x-x+2=0

              x(x-2)-1(x-2)=0

              (x-2)(x-1)=0

              x = 2 or x = 1

Thus, B = {1, 2}.

Now, B = {1, 2} and A = {-2, -1, 0, 1, 2}

 

Note that 0 is in set A but not in set B

         i.e. 0 € A and 0 € B,

            = A≠B

#SPJ2

Similar questions