let A= { x : x∈Z and x² ≤ 4 } and { x: x ∈ R x² -3x +2=0} i) A=B ii) A≠B iii) A∈B. Iv) A∉B
Answers
Answer:
ii) A≠B
Step-by-step explanation:
A = {n:n EZ and n² < 4}
Integers...... -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10....
n² = 4
n = ±2
So,-2≤n≤2
=0 <4
=1 <4
=4=4
=9>4=0
=1<4
=4b=4
= 9>4 =0
The elements are -2, -1, 0, 1, 2
So, A = {-2, -1, 0, 1, 2}
B = {x:x ER and x² - 3x + 2 = 0}.
Solving x² - 3x + 2 = 0,
x²-2x-x+2=0
x(x-2)-1(x-2)=0
(x-2)(x-1)=0
x = 2 or x = 1
Thus, B = {1, 2}.
Now, B = {1, 2} and A = {-2, -1, 0, 1, 2}
Note that 0 is in set A but not in set B
i.e. 0 € A and 0 € B,
= A≠B
#SPJ2