Math, asked by vinnu81, 7 months ago

Let A={(x,y):x,y€z,x²+y²≤16},then the number of reflexive relations on set A is...a)2^49 b)2^2401 c)2^2352 d)2^1176​

Answers

Answered by pulakmath007
38

SOLUTION

TO DETERMINE

 \sf{ A =  \{(x, y) :  x, y  \in \mathbb{Z} \: and \:   {x}^{2} +  {y}^{2}   \leqslant 16 \}}

The number of reflexive relations on set A is

 \sf{}a) \:  \:  \:  {2}^{49}

 \sf{}b) \:  \:  \:  {2}^{2401}

 \sf{}c) \:  \:  \:  {2}^{2352}

 \sf{}d) \:  \:  \:  {2}^{1176}

CONCEPT TO BE IMPLEMENTED

If a set A contains n elements then the total number of reflexive relations on set A are

 \sf{  =  {2}^{ {n}^{2}  - n} \: }

EVALUATION

Here

 \sf{ A =  \{(x, y) :  x, y  \in \mathbb{Z} \: and \:   {x}^{2} +  {y}^{2}   \leqslant 16 \}}

CASE : 1 x = - 4

 \sf{Then \:  \:  {y}^{2}  \leqslant 16}

  \implies\sf{ \:y = 0 }

So the points of A are (-4,0)

So the number of points of A is 1

CASE : 2 x = - 3

 \sf{Then \:  \:  {y}^{2}  \leqslant 7}

So y = - 2 , - 1 , 0 , 1 , 2

So the number of points of A are 5

CASE : 3 x = - 2

 \sf{Then \:  \:  {y}^{2}  \leqslant 12}

So y = - 3, - 2 , - 1 , 0 , 1 , 2, 3

So the number of points of A are 7

CASE : 4 x = - 1

 \sf{Then \:  \:  {y}^{2}  \leqslant 15}

So y = - 3, - 2 , - 1 , 0 , 1 , 2, 3

So the number of points of A are 7

CASE : 5 x = 0

 \sf{Then \:  \:  {y}^{2}  \leqslant 16}

So y = - 4, - 3, - 2 , - 1 , 0 , 1 , 2, 3, 4

So the number of points of A are 9

CASE : 6 x = 1

 \sf{Then \:  \:  {y}^{2}  \leqslant 15}

So y = - 2, - 2 , - 1 , 0 , 1 , 2, 3

So the number of points of A are 7

CASE : 7 x = 2

 \sf{Then \:  \:  {y}^{2}  \leqslant 12}

So y = - 3, - 2 , - 1 , 0 , 1 , 2, 3

So the number of points of A are 7

CASE : 8 x = 3

 \sf{Then \:  \:  {y}^{2}  \leqslant 7}

So y = - 2 , - 1 , 0 , 1 , 2

So the number of points of A are 5

CASE : 9 x = 4

 \sf{Then \:  \:  {y}^{2}  \leqslant 0}

So y = 0

So the number of points of A is 1

Therefore the total number of points of A are 49

Hence the total number of reflexive relations on set A are

 \sf{ =  {2}^{ {49}^{2}  - 49}  \:  \: }

 \sf { =  {2}^{49(49 - 1)} \: }

 \sf { =  {2}^{(49 \times 48)} \: }

 \sf { =  {2}^{2352} \: }

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

The inverse function of the following real valued function of real variable exist ? Give reasons.

exist ? Give reasons.f(x)= x

https://brainly.in/question/25691194

Similar questions