Let A = Z × Z and * be a binary operation on A defined by
(a,b)*(c,d) = (ad + bc, bd).
Find the identity element for * in the set A.
Answers
Answer:
An element (e, f) ϵ Z × Z be the identity element, if
(a, b) * (e, f) = (a, b) = (e, f) * (a, b) ∀ (a, b) ϵ Z × Z
i.e., if, (af + be, bf) = (a, b) = (eb + fa, fb)
i.e., if, af + be = a = eb + fa and bf = b = fb …(1)
i.e., if, f = 1, e = 0 …(2)
Hence, (0, 1) is the identity element.
‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
Check the binary operation * is commutative :
We know that, * is commutative if (a, b) * (c, d) = (c, d) * (a, b) ∀ a, b, c, d ∈ Z
L.H.S =(a, b) * (c, d)
=(a + c, b + d)
R. H. S = (c, d) * (a, b)
=(a + c, b + d)
Hence, L.H.S = R. H. S
Since (a, b) * (c, d) = (c, d) * (a, b) ∀ a, b, c, d ∈ Z
* is commutative (a, b) * (c, d) = (a + c, b + d)
Check the binary operation * is associative :
We know that * is associative if (a, b) * ( (c, d) * (x, y) ) = ((a, b) * (c, d)) * (x, y) ∀ a, b, c, d, x, y ∈ R
L.H.S = (a, b) * ( (c, d) * (x, y) ) = (a+c+x, b+d+y)
R.H.S = ((a, b) * (c, d)) * (x, y) = (a+c+x, b+d+y)
Thus, L.H.S = R.H.S
Since (a, b) * ( (c, d) * (x, y) ) = ((a, b) * (c, d)) * (x, y) ∀ a, b, c, d, x, y ∈ Z
Thus, the binary operation * is associative
Checking for Identity Element:
e is identity of * if (a, b) * e = e * (a, b) = (a, b)
where e = (x, y)
Thus, (a, b) * (x, y) = (x, y) * (a, b) = (a, b) (a + x, b + y)
= (x + a , b + y) = (a, b)
Now, (a + x, b + y) = (a, b)
Now comparing these, we get:
a+x = a
x = a -a = 0
Next compare: b +y = b
y = b-b = 0
Since A = Z × Z, where x and y are the natural numbers. But in this case, x and y is not a natural number. Thus, the identity element does not exist.