Let A = Z × Z and * be a binary operation on A defined by
(a,b)*(c,d) = (ad + bc, bd).
Find the identity element for * in the set A.
Answers
Answered by
5
Answer:
An element (e, f) ϵ Z × Z be the identity element, if
(a, b) * (e, f) = (a, b) = (e, f) * (a, b) ∀ (a, b) ϵ Z × Z
i.e., if, (af + be, bf) = (a, b) = (eb + fa, fb)
i.e., if, af + be = a = eb + fa and bf = b = fb …(1)
i.e., if, f = 1, e = 0 …(2)
Hence, (0, 1) is the identity element.
Answered by
0
Answer:
An element (e, f) ϵ Z × Z be the identity element, if
(a, b) * (e, f) = (a, b) = (e, f) * (a, b) ∀ (a, b) ϵ Z × Z
i.e., if, (af + be, bf) = (a, b) = (eb + fa, fb)
i.e., if, af + be = a = eb + fa and bf = b = fb …(1)
i.e., if, f = 1, e = 0 …(2)
Hence, (0, 1) is the identity element.
Similar questions