Let a1, a2, a3.....a18 are in A.P. and a1 =5. if a1 + a6 + a8 + a11 + a13 + a18 = 180, then the value of a18 is
Answers
Answer:
a18= 55
Step-by-step explanation:
REFER the attachment....
Answer:
The value of a₁₈ = 55
Step-by-step explanation:
Given data
a₁, a₂, a₃.. a₁₈ are in A.P
and first term a₁ = 5
a₁ + a₆ + a₈ + a₁₁ + a₁₃ + a₁₈ = 180
here we need to find the value of a₁₈
let d be the common difference
⇒ in a A.P nth term = a + (n-1) d [a = first term, d = common difference]
⇒ a₆ = 5 + (6 - 1)d = 5 + 5d
⇒ a₈ = 5 + (8 - 1)d = 5 + 7d
⇒ a₁₁ = 5 + (11 - 1)d = 5 + 10d
⇒ a₁₃ = 5 + (13 -1)d = 5 + 12d
⇒ a₁₈ = 5 + (18 - 1)d = 5+17d
from given data
5 + 5 + 5d + 5 + 7d + 5 + 10d + 5 + 12d + 5+17d = 180
⇒ 30 + 51d = 180
⇒ 51d = 150
⇒ d = 150 / 51 = 50/ 17
common difference d = 50/17
⇒ a₁₈ = 5 + (18 - 1) (50/17)
= 5 + 17 (50 / 17)
= 5 + 50 = 55
⇒ the value of a₁₈ = 55