Math, asked by HritikLM2926, 1 year ago

Let a1, a2, a3, ..... be the terms of an ap . if a1+a2+a3+....ap/a1+a2+a3+.....aq = p^2/q^2 where pnot equal to q , find the value of a6/a21

Answers

Answered by Pitymys
127

The sum of  n terms of an AP with first term  a and common difference  d is

 S_n=\frac{n[2a+(n-1)d]}{2}  .

So,

 S_p=\frac{p[2a+(p-1)d]}{2}\\<br />S_q=\frac{q[2a+(q-1)d]}{2}

It is given that

 \frac{S_p}{S_q}=\frac{p^2}{q^2}\\<br />\frac{\frac{p[2a+(p-1)d]}{2}}{\frac{q[2a+(q-1)d]}{2}  }=\frac{p^2}{q^2}\\<br />\frac{2a+(p-1)d}{2a+(q-1)d }=\frac{p}{q}\\<br />[2a+(p-1)d]q=[2a+(q-1)d]p\\<br />2a(q-p)=d(q-p)\\<br />2a=d<br />

Now,

 \frac{a_6}{a_{21}} =\frac{a+5d}{a+20d} \\<br />\frac{a_6}{a_{21}} =\frac{a+5(2a)}{a+20(2a)} \\<br />\frac{a_6}{a_{21}} =\frac{11a)}{41a} \\<br />\frac{a_6}{a_{21}} =\frac{11}{41}

Answered by aquialaska
76

Answer:

Value of \frac{a_6}{a_{21}}\:is\:\frac{11}{41}.

Step-by-step explanation:

Given:

\frac{a_1+a_2+a_3+...+a_p}{a_1+a_2+a_3+...+a_q}=\frac{p^2}{q^2}

we know that,

S_n=\frac{n}{2}(2a+(n-1)d)

So,

\frac{\frac{p}{2}(2a+(p-1)d)}{\frac{q}{2}(2a+(q-1)d)}=\frac{p^2}{q^2}

\frac{2a+(p-1)d}{2a+(q-1)d}=\frac{p}{q}

\frac{2a+pd-d}{2a+qd-d}=\frac{p}{q}

(2a+pd-d)q=(2a+qd-d)p

2aq+pqd-qd=2ap+pqd-pd

2aq-2ap=-pqd+qd+pqd-pd

2a(q-p)=(q-p)d

2a=d

Now, using a_n=a+(n-1)d

\frac{a_6}{a_{21}}=\frac{a+(6-1)d}{a+(21-1)d}

\frac{a_6}{a_{21}}=\frac{a+5(2a)}{a+20(2a)}

\frac{a_6}{a_{21}}=\frac{a+10a}{a+40a}

\frac{a_6}{a_{21}}=\frac{11a}{41a}

\frac{a_6}{a_{21}}=\frac{11}{41}

Therefore, Value of \frac{a_6}{a_{21}}\:is\:\frac{11}{41}

Similar questions