Math, asked by koushiksharma7846, 1 year ago

Let abc be a triangle with sides a= 13,b=14,c=15.then radius of the inscribed circle is:

Answers

Answered by Adityaadidangi
33
r=∆/s
∆=√[(s)(s-a)(s-b)(s-c)]
s=(a+b+c)/2=42/2=21
∆=√[21×8×7×6] = 7×3×4 = 84

r=84/21=4
Answered by guptasingh4564
8

Therefore the radius of the inscribed circle is 4

Step-by-step explanation:

Given;

For a triangle,

a=13 , b=14 and c=15

By Hero's formula;

Area of triangle abc=\sqrt{s(s-a)(s-b)(s-c)}  where s=\frac{1}{2} (a+b+c)

Then,

  s=\frac{1}{2} (13+14+15)

s=21

Now, Area of triangle abc=\sqrt{21(21-13)(21-14)(21-15)}=84

From figure;

Area of \bigtriangleup abc=Area of \bigtriangleup aob+ Area of \bigtriangleup boc+Area of \bigtriangleup aoc

⇒Area of \bigtriangleup abc=(\frac{1}{2} \times or \times ab)+(\frac{1}{2} \times op \times bc)+(\frac{1}{2} \times oq \times ac)

⇒Area of \bigtriangleup abc=(\frac{1}{2} \times r \times 13)+(\frac{1}{2} \times r \times 14)+(\frac{1}{2} \times r \times 15)  (where r is the radius of the circle)

⇒Area of \bigtriangleup abc=\frac{13r}{2}+\frac{14r}{2}  +\frac{15r}{2}

84=21r

r=4

So the radius of the inscribed circle is 4

Attachments:
Similar questions