Math, asked by talpadav841, 6 months ago

Let ∆ABC~∆DEF and their areas be respectively 64 cm² and 121cm² if EF=15.4cm, Find BC.​

Answers

Answered by Anonymous
6

Heres Ur Answer:

∆ABC~∆DEF...,..........given

Now,

By similar triangle theorem we get,

∆ABC2 /∆ DEF2 = BC2 / EF2

64/121 = BC2/(15.4)2

By taking square roots of both sides,

8/11= BC/15.4

By cross multiplication,

(15.4×8)/11 = BC

BC=11.2

therefore value of BC is 11.2

Stay Awesome!

Answered by Anonymous
30

━━━━━━━━━━━━━━━━━━━━

\sf\underbrace{Appropriate\:Question: }

  • Let △ABC∼△DEF and their areas be respectively, 64cm² and 121cm², If EF = 15.4cm, find BC.??

\sf\underbrace{Required\:Answer:}

\bf\underline{Given:}

  • ∆ABC~∆DEF ar ∆ABC = 64cm² ar ∆DEF = 121 cm² EF = 15.4 cm.

\bf\underline{To\:Find:}

  • BC

\bf\underline{Solution:}

Since ∆ABC~∆DEF

We know that if two triangle are similar,

Ratio of areas is equal to square of ratio of its corresponding sides.

\sf\underline{Hence,} \sf\dfrac{ ar \:∆ABC}{ar\:∆DEF} = \bigg(\dfrac{BC}{EF}\bigg)²

\bf\underline{putting\:The\: values:}

\\

ㅤㅤ\implies \sf\dfrac{64}{121} = \bigg(\dfrac{BC}{15.4}\bigg)²

\\

ㅤㅤ\implies \sf\dfrac{64}{121} = \sf\dfrac{BC²}{(15.4²)}

\\

ㅤㅤ\implies \sf\dfrac{64}{121} \sf{(15.4)²\:=\:BC²}

\\

ㅤㅤ\implies \bigg(\dfrac{8\:×\:8}{ 11\:×\:11}\bigg) × \sf{(15.4)²\:=\:BC²}

\\

ㅤㅤ\implies \sf\dfrac{8²}{11²} × \sf{(15.4)²\:=\:BC²}

\\

ㅤㅤ\implies \bigg(\dfrac{8²}{ 11²}× \sf{15.4}\bigg)²\sf{=\:BC²}

\\

ㅤㅤ\implies \sf\dfrac{8}{11} \sf{×\:15.4\:=\:BC}

\\

ㅤㅤ\implies \sf{BC\:=} \sf\dfrac{8}{11}\sf{×\:15.4}

\\

ㅤㅤ\implies \sf{BC\:=\:8\:×\:1.4}

\\

ㅤㅤ\implies \sf{BC\:=\:11.2}

\\

\bf\underline{Hence,\:BC\:=\:11.2\:cm}

━━━━━━━━━━━━━━━━━━━━

Attachments:
Similar questions