Math, asked by nilesh9820, 11 months ago

Let ABCD be a parallelogram. Two points E and Fare chosen on the sides BC and Co.
respectively, such that B = m, and = n, lines AE and Bf intersect at G. Prove
that the ratio
A/G=(m+1)(n+1)/mn​

Answers

Answered by Anonymous
1

SOLUTION:-

Given:

ABCD is a parallelogram.

Two points E & F choose on sides BC & CO respectively.

Such that EB/EC= m & FC/FD= n.

To prove:

 \frac{AG}{GE}  =  \frac{(m + 1)(n - 1)}{mn}

Proof:

Extend BF, so it intersects AD at J.

Now,

Let ∆AGJ & ∆BGE

 \angle AGJ =  \angle BGE \:  \:  \: (vertically \: opposite \: angle) \\  \\  \angle AJG =  \angle GBE \:  \:  \: (alternate \: interior \: angle)

Therefore,

∆AGJ∼∆BGE [By A.A rule]

 =  >  \frac{AG}{GE}  =  \frac{AJ}{BE}  \:  \:  \:  \: [ by \: c.p.c.t]

Now,

Consider ∆DFJ & ∆ABJ

 \angle J=  \angle J\:  \:  \:  (common) \\  \\  \angle DFJ =  \angle ABJ \:  \:  \:  \: (corresponding \: angle)

Therefore,

∆DFJ∼∆ABJ [By A.A rule]

 =  &gt;  \frac{</strong><strong>DJ</strong><strong>}{</strong><strong>AJ</strong><strong>}  =  \frac{</strong><strong>DF</strong><strong>}{</strong><strong>AB</strong><strong>} .........(1)

Now,we have,

 \frac{</strong><strong>AD</strong><strong>}{</strong><strong>AJ</strong><strong>}  \\  \\  =  &gt; 1 -  \frac{</strong><strong>DJ</strong><strong>}{</strong><strong>AJ</strong><strong>}  \\  \\  =  &gt; 1 -  \frac{</strong><strong>DF</strong><strong>}{</strong><strong>AB</strong><strong>}  \:  \:  \: </strong><strong>[</strong><strong>from</strong><strong> \: (1)</strong><strong>]</strong><strong>\\  \\  =  &gt; 1 -  \frac{</strong><strong>DF</strong><strong>}{</strong><strong>CD</strong><strong>}  \:  \:  \: (opposite \: sides \: of \: parallelogram \: are \: equal) \\  \\  =  &gt;  \frac{</strong><strong>CD</strong><strong> - </strong><strong>DF</strong><strong>}{</strong><strong>CD</strong><strong>} \\  \\  =  &gt;  \frac{</strong><strong>FC</strong><strong>}{</strong><strong>CD</strong><strong>}   \\  \\  =  &gt;  \frac{</strong><strong>AD</strong><strong>}{</strong><strong>AJ</strong><strong>}  =  \frac{</strong><strong>FC</strong><strong>}{</strong><strong>CD</strong><strong>} ..........(2) \\  </strong><strong>so\</strong><strong>\</strong><strong> </strong><strong>\</strong><strong>\</strong><strong>  \:  \:  \frac{</strong><strong>AG</strong><strong>}{</strong><strong>GE</strong><strong>}  =  \frac{</strong><strong>AJ</strong><strong>}{</strong><strong>BE</strong><strong>}  \\  \\  =  &gt;  \frac{</strong><strong>AG</strong><strong>}{</strong><strong>GE</strong><strong>}  =  \frac{</strong><strong>AJ</strong><strong>}{</strong><strong>AD</strong><strong>}  \times  \frac{</strong><strong>BC</strong><strong>}{</strong><strong>BE</strong><strong>}  \\  \\  =  &gt;  \frac{</strong><strong>AG</strong><strong>}{</strong><strong>GE</strong><strong>}  =  \frac{</strong><strong>CD</strong><strong>}{</strong><strong>FC</strong><strong>}  \times  \frac{</strong><strong>BC</strong><strong>}{</strong><strong>BE</strong><strong>}  \:  \:  \: </strong><strong>[</strong><strong>from</strong><strong> \: (2)</strong><strong>]</strong><strong>\\  \\  =  &gt;  \frac{</strong><strong>AG</strong><strong>}{</strong><strong>GE</strong><strong>}  =  \frac{</strong><strong>FC</strong><strong> + </strong><strong>DF</strong><strong>}{</strong><strong>FC</strong><strong>}  \times \frac{</strong><strong>BE</strong><strong> + </strong><strong>EC</strong><strong>}{</strong><strong>BE</strong><strong>}  \\  \\  =  &gt;  \frac{</strong><strong>AG</strong><strong>}{</strong><strong>GE</strong><strong>}  = (1  +  \frac{</strong><strong>FD</strong><strong>}{</strong><strong>FC</strong><strong>} ) \times (1  +  \frac{</strong><strong>EC</strong><strong>}{</strong><strong>BE</strong><strong>} ) \\  \\  =  &gt;  \frac{</strong><strong>AG</strong><strong>}{</strong><strong>GE</strong><strong>}  = (1 +  \frac{1}{n} )(1 +  \frac{1}{m} ) \\  \\  =  &gt;  \frac{</strong><strong>AG</strong><strong>}{</strong><strong>GE</strong><strong>}  =  \frac{(m + 1)(n + 1)}{mn}

Hence, proved

Hope it helps ☺️

Similar questions