Math, asked by pratham9656164, 2 months ago

Let An be the nth term of an A.P. Let Sn be the sum of first n terms of the A.P with A1= 1 and A3 = 3)(A8). Find the largest value possible of Sn.​

Answers

Answered by nandatamil2004
0

Answer:

I don't know the answer sorry...

Answered by rambabu083155
1

Answer:

largest possible value of S_{n} =\frac{100}{19}

Step-by-step explanation:

Given:-   a_{1} = A = 1        a_{3} = 3a_{8}    

T_{n} = A+ (n -1)d

a_{3} = A +2d

a_{8} = A+ 7d

A+ 2d = 3(A + 7d)

-2A = 19d

d = \frac{-2}{19}

S_{n} = \frac{n}{2} [2A+ (n-1)d]

    = \frac{n}{2} [2 +(n-1)-2/19]

    = n+ \frac{n}{2} (n-1)(n-2)/19

    = n - n(n-1)/19

S_{n} = \frac{20n -n^{2} }{19}

For maxima;

\frac{dS_{n}}{dn} = \frac{1}{19}[20 - 2n] = 0

     ⇒ 20 - 2n = 0

     ⇒ 2n = 20

     ∴ n = 10

\frac{d^{2} S_{n}  }{dn} = \frac{-2}{19} < 0

S_{n} =  \frac{20n -n^{2} }{19}

       = \frac{20(10) - (10)^{2} }{19}

       = \frac{200 - 100}{19}

       = \frac{100}{19}

Similar questions