Chemistry, asked by shahvishakha1894, 8 months ago

Let α,β be any two positive values of x for which 2cosx,|cosx| and (1−3 cos2x) are in G.P. The minimum value of |α−β| is

Answers

Answered by saounksh
1

ᴀɴsᴡᴇʀ

  •  \boxed{min|\alpha - \beta| =  \pi}

ᴇxᴘʟᴀɪɴᴀᴛɪᴏɴ

Since  2cos(x), |cos(x)|, (1- 3cos(2x)) are in GP,

\frac{|cos(x)|}{2cos(x)} = \frac{(1- 3cos(2x))}{|cos(x)|}

|cos(x)|^2 = 2cos(x)(1- 3cos(2x))

 |cos(x)|^2 = 2cos(x)

 \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:- 6cos(x)cos(2x)

 cos^2(x)= 2cos(x)

 \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:- 6cos(x)(2cos^2(x)-1)

 cos^2(x)= 2cos(x)- 12cos^3(x)

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:-6cos(x)

 cos^2(x)= - 4cos(x)- 12cos^3(x)

 12cos^3(x) + cos^2(x) + 4cos(x) =0

 cos(x)[12cos^2(x) + cos(x) + 4]=0

\to cos(x) = 0

or \:\:[12cos^2(x) + cos(x) + 4]=0

Discriminant of the quadractic equation is

 \:\:\:\:\:D = b^2 - 4ac

 \to D = 1^2 - 4\times 12\times 4

 \to D = 1 - 192

 \to D = - 191

 \to D ≤ 0

Thus the quadratic equation has no real roots and can be neglected.

\to cos(x) = 0

\to x = \frac{\pi} {2}, \frac{3\pi}{2}, \frac{5\pi} {2},... .Therefore minimum value

 \:\:\:min|\alpha - \beta|

 \to |\frac{3\pi} {2}- \frac{\pi}{2}|

 \to |\frac{(3-1)\pi}{2}|

 \to \pi

Similar questions