Math, asked by tomaraditya65051, 5 hours ago

Let α,β,γ be the roots of the equation 2x³+3x²-12x+3= 0 and A(α,β,γ),B(β,γ,α),C(γ,α,β) represent vertices of a triangle ABC then the centroid of the triangle lies upon the line.

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that,

  • α,β,γ be the roots of the equation 2x³+3x²-12x+3= 0.

  • A(α,β,γ),B(β,γ,α),C(γ,α,β) represent vertices of a triangle ABC.

We know,

\red{\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: roots \: of \: a {x}^{3}  + b {x}^{2} +  cx + d = 0, \: then}

\boxed{ \bf{ \:  \alpha +   \beta  +  \gamma  =  - \dfrac{b}{a}}}

So, given that,

\red{\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: roots \: of \:2{x}^{3}  +3{x}^{2} - 12x + 3 = 0, \: then}

\rm :\longmapsto\:\boxed{ \bf{ \:  \alpha  +  \beta  +  \gamma  =  - \dfrac{3}{2}}} -  -  -  - (1)

Now, further, It is given that,

  • A(α,β,γ),B(β,γ,α),C(γ,α,β) represent vertices of a triangle ABC.

So, Let assume centroid of triangle ABC, is represented as G(x, y, z) and is given by

\rm :\longmapsto\:(x,y,z) = \bigg(\dfrac{ \alpha  +  \beta  +  \gamma }{3},\dfrac{ \alpha  +  \beta  +  \gamma }{3},\dfrac{ \alpha +   \beta  +  \gamma }{3} \bigg)

can be rewritten as

\rm :\longmapsto\:(x,y,z) = \bigg( - \dfrac{1}{2}, - \dfrac{1}{2},  - \dfrac{1}{2} \bigg)

 \red{ \bigg\{  \sf \: \because \: using \: equation \: (1) \bigg\}}

So,

\rm\implies \:x \:  =  \:  - \:  \dfrac{1}{2}

\rm\implies \:y \:  =  \:  - \:  \dfrac{1}{2}

\rm\implies \:z \:  =  \:  - \:  \dfrac{1}{2}

So,

\bf\implies \:x = y = z

It means coordinates of Centroid G, lies on the above line which passes through (0, 0, 0) and having direction ratios (1, 1, 1) respectively.

Answered by EmperorSoul
13

\large\underline{\sf{Solution-}}

Given that,

α,β,γ be the roots of the equation 2x³+3x²-12x+3= 0.

A(α,β,γ),B(β,γ,α),C(γ,α,β) represent vertices of a triangle ABC.

We know,

\red{\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: roots \: of \: a {x}^{3}  + b {x}^{2} +  cx + d = 0, \: then}

\boxed{ \bf{ \:  \alpha +   \beta  +  \gamma  =  - \dfrac{b}{a}}}

So, given that,

\red{\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: roots \: of \:2{x}^{3}  +3{x}^{2} - 12x + 3 = 0, \: then}

\rm :\longmapsto\:\boxed{ \bf{ \:  \alpha  +  \beta  +  \gamma  =  - \dfrac{3}{2}}} -  -  -  - (1)

Now, further, It is given that,

A(α,β,γ),B(β,γ,α),C(γ,α,β) represent vertices of a triangle ABC.

So, Let assume centroid of triangle ABC, is represented as G(x, y, z) and is given by

\rm :\longmapsto\:(x,y,z) = \bigg(\dfrac{ \alpha  +  \beta  +  \gamma }{3},\dfrac{ \alpha  +  \beta  +  \gamma }{3},\dfrac{ \alpha +   \beta  +  \gamma }{3} \bigg)

can be rewritten as

\rm :\longmapsto\:(x,y,z) = \bigg( - \dfrac{1}{2}, - \dfrac{1}{2},  - \dfrac{1}{2} \bigg)

 \red{ \bigg\{  \sf \: \because \: using \: equation \: (1) \bigg\}}

So,

\rm\implies \:x \:  =  \:  - \:  \dfrac{1}{2}

\rm\implies \:y \:  =  \:  - \:  \dfrac{1}{2}

\rm\implies \:z \:  =  \:  - \:  \dfrac{1}{2}

So,

\bf\implies \:x = y = z

It means coordinates of Centroid G, lies on the above line which passes through (0, 0, 0) and having direction ratios (1, 1, 1) respectively.

Similar questions