Physics, asked by Ataraxia, 1 month ago

Let C be the capacitance of a capacitor discharging through a resistor R. Suppose t₁ is the time taken for the energy stored in the capacitor to reduce to half its initial value and t₂ is the time taken for the charge to reduce to one-fourth its initial value. Then the ratio t₁/t₂ will be ? ​

Answers

Answered by SparklingBoy
250

Given :-

  • C is the capacitance of a capacitor discharging through a resistor R.

  • t₁ is the time taken for the energy stored in the capacitor to reduce to half its initial value

  • t₂ is the time taken for the charge to reduce to one-fourth its initial value.

To Find :-

  • Value of t₁ / t₂

Solution :-

We Know equation of discharging of a charge is :

 \bf q = q_{ \circ} {e}^{-t/RC}  \:  -  -  - (1)

According To Question :

 \pink {\text{At time t = t₂ }} \\

\text q =  \dfrac{\text q_{ \circ}}{4}  \\

Using (1) :

:\longmapsto\dfrac {\cancel{\text q_{ \circ}}}{4}  =   \cancel\text q_{ \circ} {\text e}^{ - { \text t_2/ \text{RC}}} \\

 :\longmapsto\sf\dfrac{1}{4}  =  {e}^{-t_2/RC}  \\

Taking Log Both Side :

:\longmapsto \sf \log \bigg( \dfrac{1}{4}  \bigg) =  \log \big(  {e}^{-t_2/RC} \big) \\

:\longmapsto \sf \log {(4)}^{ - 1}  =  \log( {e)}^{-t_2/RC}  \\

:\longmapsto  \sf \cancel- 1( \log4) =\cancel - \dfrac{t_2}{RC}. \log \: e \\

:\longmapsto \sf \log4 =  \dfrac{t_2}{RC} \\

:\longmapsto \sf t_2 = RC .\log4 \\

:\longmapsto \sf t_2 = RC . \log{2}^{2}  \\

:\longmapsto  \boxed{ \pink{ \boxed{\bf t_2 = 2\times RC \times  log2}}}

As Energy Stored in a capacitor is :

 \text E =   \frac{1}{2} \dfrac{ {\text q_{ \circ}}^{2} }{ \text{C}}  \:  \:  -  -  - (2) \\

Let when charge is q₁ , Energy becomes E/2

So,

 \sf \dfrac{E}{2}  =   \frac{1}{2} \frac{q_1 {}^{2} }{C}  \\

Using (2) :

:\longmapsto \sf \cancel\dfrac{1}{2}  \frac{ {q_{ \circ}}^{2} }{2 \cancel C } =\cancel\dfrac{1}{2}  \frac{ {q_1}^{2} }{C}   \\

:\longmapsto \bf q_1 =  \dfrac{q_{ \circ}}{\sqrt{2}}\:\: ----(3)

Using (1) :

:\longmapsto \sf q_1 = q_{ \circ} { \: e}^{ - t_1/RC}  \\

Using (3) :

:\longmapsto \sf \dfrac{ \cancel {q_{ \circ}}}{ \sqrt{2} }  =  \cancel{q_{ \circ}} \:  {e}^{ - t_1/RC}  \\

:\longmapsto \sf \dfrac{1}{ \sqrt{2} }  =  {e}^{ - t_1/RC}  \\

Taking Log Both Side :

:\longmapsto  \sf\log \bigg( \dfrac{1}{ \sqrt{2} }  \bigg) =  \log( {e)}^{ - t_1/RC}  \\

:\longmapsto  \sf\log(2) {}^{ - 1/2}  =  \log( {e)}^{ - t_1/RC}  \\

:\longmapsto \sf \cancel -  \dfrac{1}{2}  \log(2) =  \cancel -  \dfrac{t_1}{RC} \log \: e \\

:\longmapsto \sf\dfrac{1}{2}  \log2 =  \dfrac{t_1}{RC} \\

:\longmapsto  \boxed{ \pink{ \boxed{\bf t_2 =  \frac{1}{2}  \times RC \times  log2}}}

Hence,

 \sf \dfrac{t_1}{t_2}  =  \frac{\frac{1}{2}  \times \cancel{RC} \times   \cancel{\log2}} { 2  \times \cancel{RC} \times   \cancel{\log2}} \\

\purple{ \large :\longmapsto  \underline {\boxed{{\bf  \frac{t_1}{t_2}  = \frac{1}{4}  } }}}


ZzyetozWolFF: Awesome.
rsagnik437: Splendid !
BrainlyPhantom: Amazing.
Answered by Atlas99
85

\color{red}{}REFER \:  \:  THE \:  \:  ATTACHMENT \:  \:  FOR  \:  \: ANSWER

Attachments:
Similar questions