Math, asked by jayanthsuryaa1209, 1 year ago

let d(3,-2),e(-3,1),f(4,-3) be the midpoints of the sides bc,ac,ab respectively of triangle abc.find the coordinates of a,b,c​

Answers

Answered by sprao534
14

Please see the attachment

Attachments:

jayanthsuryaa1209: bro from which region r u from
jayanthsuryaa1209: mr.sprao
jayanthsuryaa1209: contact
jayanthsuryaa1209: my wmail
jayanthsuryaa1209: jayanth.suryaa
jayanthsuryaa1209: @rediff
Answered by amirgraveiens
10

Hence  the coordinates of a,b,c  are a(-2,0), b(-10,-6), c(-4,2).

Step-by-step explanation:

Given:

Here d(3,-2),e(-3,1),f(4,-3) be the midpoints of the sides bc, ac, ab respectively of triangle abc.

Let the co-ordinates of the triangle abc be a(x_1,y_1), b(x_2,y_2), c(x_3,y_3)

Now, d(3.-2) is the midpoint of side bc, therefore

(\frac{x_2+x_3}{2},\frac{y_2+y_3}{2}) =d(3,-2)

Also, e(-3,1)  is the midpoint of side ac, therefore

\frac{x_1+x_3}{2},\frac{y_1+y_3}{2} = e(-3,1)

Also, f(4,-3) is the midpoint of side ab, therefore

\frac{x_1+x_2}{2},\frac{y_1+y_2}{2} = f(4,-3)

On comparing the co-ordinates in the above 3, we get

\frac{x_1+x_2}{2}=4 and \frac{y_1+y_2}{2}=-3

{x_1+x_2}=4 \times 2 and {y_1+y_2}=-3\times2  

{x_1+x_2}=8 and {y_1+y_2}=-6   [1]

\frac{x_1+x_3}{2}=-3 and \frac{y_1+y_3}{2}=1

{x_1+x_3}=-3\times 2 and {y_1+y_3}=2  

{x_1+x_3}=-6 and {y_1+y_3}=2   [2]

\frac{x_2+x_3}{2}=3 and \frac{y_2+y_3}{2}=-2

{x_2+x_3}=3\times 2 and {y_1+y_3}=-2\times2  

{x_2+x_3}=6 and {y_1+y_3}=-4   [3]

Adding the equations in x's and y's separately, we get

2x_1+2x_2+2x_3=8-6+6 and 2y_1+2y_2+2y_3=-6+2-4

2(x_1+x_2+x_3)=8 and 2(y_1+y_2+y_3)=-8

(x_1+x_2+x_3)=\frac{8}{2} and (y_1+y_2+y_3)=\frac{-8}{2}

(x_1+x_2+x_3)=4 and (y_1+y_2+y_3)=-4    [4]

Subtracting 1 from 4, we get

x_1+x_2+x_3-(x_1+x_2)=4-8 and y_1+y_2+y_3-(y_1+y_2)=-4-(-6)

x_1+x_2+x_3-x_1-x_2=-4 and y_1+y_2+y_3-y_1-y_2=2

x_3=-4 and y_3=2

Subtracting 2 from 4, we get

x_1+x_2+x_3-(x_1+x_3)=4-(-6) and y_1+y_2+y_3-(y_1+y_3)=-4-2

x_1+x_2+x_3-x_1-x_3=-10 and y_1+y_2+y_3-y_1-y_3=-6

x_2=-10 and y_2=-6

Subtracting 3 from 4, we get

x_1+x_2+x_3-(x_2+x_3)=4-6 and y_1+y_2+y_3-(y_2+y_3)=-4-(-4)

x_1+x_2+x_3-x_2-x_3=-2 and y_1+y_2+y_3-y_2-y_3=0

x_1=-2 and y_1=0

Hence the points are a(-2,0), b(-10,-6), c(-4,2).

Similar questions