Math, asked by Anonymous, 1 year ago

Let 'd' be the perpendicular distance from the centre of the ellipse

 \frac{ {x}^{2} }{ {a}^{2} }  +  \frac{ {y}^{2} }{ {b}^{2} }  = 1

to the tangent drawn at a point P on the ellipse.

If F_1\:andF_2\: are the two focii of the ellipse, then show that,

{(PF_1-PF_2)}^{2}=4{a}^{2}(1-\frac{{b}^{2}}{{d}^{2}})


✔️✔️Proper solution needed✔️✔️​

Answers

Answered by generalRd
9

ANSWER

Plz refer to the attachment for diagram.

Step By Step Explanation

Let the coordinates of P be (  aCos\theta , bSin\theta )

Now, equation of tangent at P is >

 \dfrac{x}{a}Cos\theta + \dfrac{y}{b}Sin \theta = 1

Now,

d = \dfrac{0+0-1}{ \sqrt(\dfrac{cos^{2}\theta}{a^{2} } + \dfrac{Sin^{2} \theta}{b^{2} }) }

=>\dfrac{1}{d^{2} }

= \dfrac{1}{\dfrac{Cos^{2} }{a^{2} } + \dfrac{Sin^{2} }{b^{2}  } }

Now,

RHS

4a^{2}(1 - \dfrac {b^{2} }{d^{2} } )

=>4a^{2} - \dfrac{4a^{2}b^{2} } {d^{2} }

=> ( 4a^{2} - 4a^{2}b^{2} ) ( \dfrac{Cos^{2}\theta}{a^{2} } + \dfrac{Sin^{2}\theta}{b^{2} } )

=> 4a^{2} - 4b^{2}Cos^{2}\theta - 4a^{2}Sin^{2}\theta

=>  4a^{2}(1 - Sin^{2}\theta) -4b^{2}Cos^{2}\theta

=>  4a^{2}Cos^{2}\theta - 4 b^{2} Cos^{2}\theta

=>  4Cos^{2}\theta(a^{2} - b^{2})

=> 4Cos^{2}\theta\times a^{2}e^{2}

Again,

PF_{1} = e|aCos\theta + \dfrac{a}{e}|

=> PF_{1} =  a|eCos\theta + 1|

=> PF_{1} = a(eCos\theta + 1)

Similarly we have >

 PF_{2} =a(1 - eCos\theta)

Now,

RHS

 (PF_{1} - PF_{2} )^{2}

=> ( a(eCos\theta + 1) - a(1 - eCos\theta) )^{2}

=>  (2ae Cos\theta)^{2}

=>4a^{2}e^{2}Cos^{2}

Hence , LHS = RHS

Proved

Attachments:

Anonymous: r u online?
generalRd: yesS
generalRd: fixing the one line
generalRd: of latex
Anonymous: inbox me a min
generalRd: Done see now bro
Anonymous: yeahhh.... finally ;)
Anonymous: great work bro ✋✔️✔️
Anonymous: ✔️ great answer :)
generalRd: thanks
Similar questions